首页|基于知识与数据相结合的高炉炉温融合预测

基于知识与数据相结合的高炉炉温融合预测

扫码查看
针对复杂高炉冶炼过程具有大滞后等特点,为提高高炉炉温预测精度,提出一种经验知识与数据相结合的炉温融合预测方法.首先,根据高炉经验知识,分析各变量在高炉内的滞后关系,以及在滞后时间内停留在高炉内部形成的累积关系,累积量对当前炉温造成的影响.通过累积量进行相关性分析,合理地确定输入变量.然后,将铁水温度与铁水硅含量融合来更好地表征炉温.最后,通过神经网络利用累积量作为输入建立经验知识与数据相结合的高炉炉温融合预测模型.实验中使用某钢厂高炉生产数据进行仿真,结果表明累积量模型具有良好的性能,可为高炉炉温预测提供新思路.
Fusion prediction of blast furnace temperature based on combination of knowledge and data
In view of the large lag in the complex blast furnace smelting process,in order to improve the accuracy of blast furnace temperature prediction,a furnace temperature fusion prediction method combining empirical knowledge and data was proposed.First,this paper analyzed experience of the blast furnace,obtained the hysteresis relationship of each variable in the blast furnace and each variable had a cumulative relationship within the lag time in the blast furnace,and the accumulations affected the current blast furnace temperature.Selecting the input variable reasonably by correlation analysis of the accumulations of each variable.Then a method of fusing the temperature of the molten iron with the silicon content of the molten iron was proposed to better characterize the temperature of the blast furnace.Finally,based on combining knowledge of experience and data,a neural network was used to establish the fusion model for prediction of the blast furnace temperature by accumulations as inputs.In the experiment,the data came from blast furnace production in a steel plant and this data is used for simulation,the model has good performance and provides new ideas for prediction of the blast furnace temperature.

blast furnace ironmakingknowledge of experienceneural networkblast furnace temperature

古志远、吕东澔、李向丽、张勇、代学冬

展开 >

内蒙古科技大学,内蒙古包头 014010

常熟理工学院电气与自动化工程学院,江苏苏州 215500

高炉炼铁 经验知识 神经网络 高炉炉温

国家自然科学基金国家自然科学基金国家自然科学基金内蒙古自治区自然科学基金内蒙古自治区自然科学基金

6176303861763039618030492019BS060042020LH06006

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(3)
  • 15