首页|改进轻量化YOLOv7-tiny道路限高障碍物检测方法

改进轻量化YOLOv7-tiny道路限高障碍物检测方法

扫码查看
针对道路限高障碍物检测困难、模型复杂以及难以在嵌入式端部署等问题,提出一种基于改进轻量化YOLOv7-tiny模型的道路限高障碍物检测方法.改进模型采用更加轻量的FasterNet网络替换原有主干网络,在Neck层使用PConv卷积替代部分Conv卷积,以减少计算冗余和内存访问,从而有效降低模型的参数量和计算量.同时,引入CA注意力机制提高检测精度,并使用Focal-EIoU损失函数优化模型的收敛速度和效率.实验结果表明:相较于YOLOv7-tiny目标检测模型,改进模型在检测数据集上,mAP@0.5提高 6.6%,参数量和计算量分别降低24%和20.5%,模型权重文件减少27.2%,能够在保持较高检测精度的同时,满足轻量化的需求.
Improved lightweight YOLOv7-tiny method for road height limitation obstacle detection
In response to the challenges of difficult detection of road height restrictions,complex and bulky models,and difficulties in deploying on embedded devices,a road height obstacle detection method based on an improved lightweight YOLOv7-tiny model is proposed.The improved model utilizes a lighter FasterNet network instead of the original backbone network and incorporates PConv convolution in the Neck layer to reduce computational redundancy and memory access,effectively reducing the model's parameter and computation complexity.The introduction of the CA attention mechanism enhances the detection accuracy,and the Focal-EIoU loss function optimizes the model's convergence speed and efficiency.Experimental results showed that compared to the YOLOv7-tiny object detection model,the improved model achieved a 6.6%increase in mAP@0.5 on the detection dataset,reduced parameters and computations by 24%and 20.5%respectively,and reduced the model weight file by 27.2%.This improved model successfully meets the lightweight requirement while maintaining a high detection accuracy.

obstacle detectionlightweightYOLOv7-tinyFasterNetPConv convolutionCA attention mechanism

张青春、王文聘、张洪源、张恩溥、宁建峰

展开 >

淮阴工学院自动化学院,江苏淮安 223001

障碍物检测 轻量化 YOLOv7-tiny FasterNet PConv卷积 CA注意力机制

江苏省研究生科研与实践创新计划项目

SJCX21_1507

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(5)
  • 9