首页|基于LSTM模型的浮式风机系泊监测数据解算方法

基于LSTM模型的浮式风机系泊监测数据解算方法

扫码查看
针对浮式风机系泊倾角监测数据如何准确解算为系泊张力响应的问题,提出一种基于长短时记忆(LSTM)网络与全连接网络(FCN)相结合的系泊张力解算模型.首先,针对在役的"扶摇号"浮式风机,建立风-浪-流耦合时域仿真模型,用以获取不同工况下系泊张力与倾角数据,从而形成神经网络的训练与验证数据集.在Keras框架下,开发FCN与LSTM的组合网络模型,选取Adam优化器进行训练,获得验证集损失函数最小的网络参数.最后,分别采用传统悬链线方程与神经网络模型对系泊张力响应进行预测,并与实际结果进行比对分析.结果表明:神经网络能够考虑到不同系泊倾角对应的导缆孔平均高度变化以及系泊运动的动态过程,在系泊张力时程曲线、均值、标准差及最大值等预测上比传统悬链线方程具有更高的精度,两者对于系泊张力最大值的预报误差分别为 6.4%和17.1%.
Calculation method for mooring monitoring data of floating wind turbines using LSTM model
Addressing the challenge of accurately converting the monitoring declination of floating wind turbine into mooring tension responses,this study introduces a hybrid neural network model that integrates Long Short-Term Memory(LSTM)networks with Fully Connected Networks(FCNs).Initially,a coupled time-domain simulation model considering wind,wave and current interactions was constructed for the in-service"Fuyao"floating wind turbine to obtain mooring tension and declination data under various conditions,forming the dataset for neural network training and validation.Within the framework of Keras,a combined network model of FCN and LSTM was developed and trained using the Adam optimizer,and the network parameters with the minimal validation loss were ultimately preserved.Comparative analysis with traditional catenary equation predictions revealed that the proposed neural network model demonstrated enhanced accuracy in forecasting mooring tension in terms of time series,mean,standard deviation and peak values.The prediction errors for the maximum mooring tension of the two are 6.4%and 17.1%respectively.

mooring tensiondata calculationFCN modelLSTM modelmooring declination

梁瑞庆、邓燕飞、冯玮

展开 >

国家能源集团广东电力有限公司,广东广州 510000

哈尔滨工业大学(深圳),广东深圳 518000

电子科技大学(深圳)高等研究院,广东深圳 518000

系泊张力 数据解算 FCN模型 LSTM模型 系泊倾角

国家自然科学基金广东省自然科学基金广东省海洋六大产业专项

523013172024A1515011587粤自然资合[2023]48

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(8)