首页|应用多策略融合改进哈里斯鹰算法的移动机器人路径规划方法

应用多策略融合改进哈里斯鹰算法的移动机器人路径规划方法

扫码查看
针对移动机器人在多障碍物室内环境中进行路径规划时存在的折点多、收敛速度慢、易陷入局部最优解等问题,提出一种基于多策略融合改进哈里斯鹰算法的移动机器人路径规划方法.首先,利用Tent混沌映射初始化和自适应正余弦算法,改善初始种群分布多样性并增强全局搜索能力;其次,使用模拟退火能量策略改善哈里斯鹰算法的行为选择,加强算法收敛速度;然后,使用柯西函数和改进莱维飞行优化算法位置更新行为,提升算法的寻优性能和效率;最后,使用消融实验和对比实验对移动机器人在不同复杂程度的地图场景中的路径规划性能进行验证.实验结果表明:多策略融合改进哈里斯鹰算法在移动机器人路径规划问题中,不仅可以有效减少折点数获得较好的路径平滑度,还可达到更快的收敛速度和更短的移动路径.
A path planning method for mobile robots based on multi-strategy fusion to improve the Harris hawk optimization algorithm
Aiming at the problems of many folding points,slow convergence speed and easy to fall into local optimal solutions when mobile robots perform path planning in multi-obstacle indoor environments,a mobile robot path planning method based on multi-strategy fusion to improve the Harrishawk optimization algorithm is proposed.Firstly,Tent chaotic mapping initialization and adaptive positive cosine algorithm are used to improve the diversity of the initial population distribution and enhance the global search ability.Secondly,simulated annealing energy strategy is used to improve the behavioral selection of Harris hawk optimization algorithm and strengthen the convergence speed of the algorithm.And then Cauchy function and improved Levy flight optimization algorithm position updating behaviors are used to improve the algorithm's optimization search performance and efficiency.Finally,ablation and comparison experiments are used to validate the path planning performance of the mobile robot in map scenarios with different levels of complexity.The experimental results show that the multi-strategy fusion to improve the Harris hawk optimization algorithm in the mobile robot path planning problem can not only effectively reduce the number of folding points to obtain a better path smoothness,but also achieve faster convergence speed and shorter moving paths.

mobile robotpath planningmulti-strategy fusionHarris hawk optimization algorithm

胡万望、于丽娅、张涛、李传江、蒲睿强、路辉、马靓

展开 >

贵州大学机械工程学院,贵州贵阳 550025

中国电信股份有限公司贵阳分公司,贵州贵阳 550004

贵州大学公共大数据国家重点实验室,贵州贵阳 550025

贵阳铝镁设计研究院有限公司,贵州贵阳 550081

展开 >

移动机器人 路径规划 多策略融合 哈里斯鹰算法

国家自然科学基金资助项目贵州省科技计划项目贵阳铝镁设计研究院有限公司科技项目贵州烟草公司科技项目

52275480黔科合基础-ZK[2024]一般019GYYZKY2022006JY2022-14

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(9)
  • 6