首页|智能汽车自适应工况路径跟踪控制

智能汽车自适应工况路径跟踪控制

扫码查看
为解决车辆在不同路面附着系数和曲率条件下跟踪精度问题,提出一种汽车自适应工况路径跟踪控制器.首先,基于三自由度车辆动力学模型建立模型预测控制构架,利用Dugoff轮胎模型结合容积卡尔曼滤波算法估算出路面附着系数,根据车辆操作稳定性评价指标拟合路面附着系数与最优车速曲线;根据不同的车速和曲率,利用蚁群算法优化得到不同工况下最优预测时域和控制时域,设计一种自适应参数时域的MPC控制器.在Carsim/Simulink中进行仿真实验,结果表明:自适应参数时域的MPC控制器在不同工况下会采取合适的时域参数,与传统MPC控制器相比,在路面附着系数和道路曲率变化的路径跟踪中,最大侧向偏差缩小 71%,最大横摆角误差缩小 84.5%,最大质心侧偏角缩小23%.可见,该文设计的自适应时域参数控制器更稳定,跟踪效果更好.
Adaptive driving condition path tracking control of intelligent vehicle
In order to solve the problem of vehicle tracking accuracy under different road adhesion coefficients and curvature conditions,a vehicle adaptive path tracking controller is proposed.Firstly,the model predictive control framework is established based on the three-degree-of-freedom vehicle dynamics model.The Dugoff tire model combined with the cubature Kalman filter algorithm is used to estimate the road adhesion coefficient,and the road adhesion coefficient and the optimal vehicle speed curve are fitted according to the vehicle operation stability evaluation index.According to different vehicle speeds and curvatures,the ant colony algorithm is used to optimize the optimal prediction time domain and control time domain under different working conditions,and a MPC controller with adaptive parameter time domain is designed.The simulation experiment is carried out in Carsim/Simulink.The results show that the MPC controller with adaptive parameter time domain will adopt appropriate time domain parameters under different working conditions.Compared with the traditional MPC controller,the maximum lateral deviation is reduced by 71%,the maximum yaw angle error is reduced by 84.5%,and the maximum sideslip angle is reduced by 23%.It can be seen that the adaptive time domain parameter controller designed in this paper is more stable and has better tracking effect.

path trackingmodel predictive controlestimation of road adhesion coefficientant colony algorithm

李旭阳、许鸣珠、韩刚、陈旭升

展开 >

石家庄铁道大学机械工程学院,河北石家庄 050043

石家庄荣信科技有限公司,河北石家庄 050090

沈阳铁路局沈阳工务段,辽宁沈阳 110001

路径跟踪 模型预测控制 路面附着系数估计 蚁群算法

国家自然科学基金项目

U22A20246

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(9)
  • 13