首页|应用VMD-HPO-NBEATS模型的锂离子电池SOH预测

应用VMD-HPO-NBEATS模型的锂离子电池SOH预测

扫码查看
锂离子电池的健康状态(SOH)对维持新能源电动汽车系统的稳定性至关重要.为提高锂电池SOH预测精度,提出一种基于变分模态分解(VMD)的猎人猎物优化(HPO)的神经基扩展分析(NBEATS)神经网络的SOH预测方法.首先,通过对电池老化数据的分析,提取与SOH高度相关的健康因子(HIs)并进行融合;其次,利用VMD方法将融合HI分解为多个模态分量,并使用HPO超参数优化的NBEATS模型来捕捉各模态分量的特征和时序规律.最终,通过加和重构各个分量的预测值来获得电池的SOH预测.在NASA电池数据集上的实验表明,与NBEATS、HPO-NBEATS和VMD-NBEATS模型相比,VMD-HPO-NBEATS模型在MAE、RMSE和r2 评价指标上均有超 2%的提升,证明所提方法在SOH预测的有效性与优越性.
State of health prediction of lithium-ion batteries based on VMD-HPO-NBEATS model
The State of Health(SOH)of lithium-ion batteries is crucial for maintaining the stability of new energy electric vehicle systems.To improve the accuracy of SOH prediction for lithium batteries,a SOH prediction method based on the Variational Mode Decomposition(VMD)Hunter-Prey Optimization(HPO)Neural Basis Expansion Analysis(NBEATS)neural network is proposed.Firstly,by analyzing the battery aging data,health indicators(HIs)highly related to SOH are extracted and fused;secondly,the fused HIs are decomposed into multiple modal components using the VMD method,and the characteristics and temporal patterns of each modal component are captured using the NBEATS model with HPO hyperparameter optimization.Finally,the SOH prediction of the battery is obtained by summing and reconstructing the predicted values of each component.Ablation experiments on the NASA battery dataset show that compared with the NBEATS,HPO-NBEATS,and VMD-NBEATS models,the VMD-HPO-NBEATS model has an improvement of more than 2%in MAE,RMSE,and r2 evaluation metrics,proving the effectiveness and superiority of the proposed method in SOH prediction.

lithium-ion batterystate of healthNBEATS modelhunter-prey optimizer algorithmvariational mode decomposition

李泽龙、乔钢柱、崔方舒、蔡江辉、史元浩、王博辉

展开 >

中北大学计算机科学与技术学院,山西太原 030051

中北大学电气与控制工程学院,山西太原 030051

西安交通大学网络空间安全学院,陕西西安 710049

锂离子电池 健康状态 NBEATS模型 猎人猎物优化算法 变分模态分解

山西省基础研究计划资助项目山西省基础研究计划联合资助项目山西省研究生教育创新项目

202303021222084TZLH202308180072024KY613

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(9)
  • 5