首页|基于CEEMDAN和极限学习机的脉象混合特征识别方法

基于CEEMDAN和极限学习机的脉象混合特征识别方法

扫码查看
中医脉象的准确识别有利于人体疾病的诊断,针对脉象特征模糊问题,提出一种基于自适应噪声完全集合经验模态分解(CEEMDAN)和基本脉象时域特征、能量熵与样本熵的混合特征提取方法.首先,采集人体脉象信号进行小波分解,以去除高频噪声和基线漂移.其次,对 5种脉象信号进行CEEMDAN处理得到各阶固有模函数(IMF),计算IMF分量能量占比与脉象信号的相关性,选取 5~7阶IMF分量计算能量熵和样本熵.最后,将时域特征、能量熵与样本熵融合的混合特征向量,输入到麻雀算法优化极限学习机(SSA-ELM)中进行脉象识别.实验结果表明,该文所提方法的脉象识别准确率达 98.60%,平均精确率为 98.64%,单种脉象识别的召回率及F1值都在 97%以上.与传统方法相比,该方法具有较好的识别性能.
Hybrid feature recognition method for pulse based on CEEMDAN and extreme learning machine
Accurate identification of traditional Chinese medicine pulse patterns is beneficial for diagnosing human diseases.In response to the problem of fuzzy pulse pattern characteristics,a hybrid feature extraction method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),fundamental pulse waveform time-domain features,energy entropy,and sample entropy is proposed.First,human pulse signal data are collected and subjected to wavelet decomposition to remove high-frequency noise and baseline drift.Second,the CEEMDAN method is applied to process pulse signals of five different types,resulting in intrinsic mode functions(IMF)at various orders.The selection of 5-7 order IMF components for computing energy entropy and sample entropy is based on their energy proportions and correlation with the pulse signal.Finally,a hybrid feature vector combining time-domain features,energy entropy,and sample entropy is input into a Sparrow algorithm-optimized Extreme Learning Machine(SSA-ELM)for pulse pattern recognition.The results demonstrate an accuracy rate of 98.60%,with an average precision of 98.64%.Moreover,recall rates and F1 scores for pulse pattern recognition are consistently above 97%.Compared to traditional methods,the proposed strategy exhibits superior recognition performance.

pulse recognitionCEEMDANenergy entropysample entropycorrelation analysis

张靖轩、李长龙、王晓青、江春花、吴晨曦、徐勤奇

展开 >

华北理工大学电气工程学院,河北唐山 063210

唐山市妇幼保健院,河北唐山 063000

华北理工大学中医学院,河北唐山 063210

脉象识别 CEEMDAN 能量熵 样本熵 相关性分析

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(12)