首页|基于KECA和维纳过程的风电齿轮箱剩余寿命预测

基于KECA和维纳过程的风电齿轮箱剩余寿命预测

扫码查看
齿轮箱是风电机组的关键设备,其性能一旦退化至失效状态,会造成严重的安全隐患.为动态掌握齿轮箱的退化过程,提出一种基于核熵成分分析与维纳过程的剩余寿命预测方法.数据预处理时,使用随机森林算法剔除离群点和异常值,并通过皮尔逊算法选取与齿轮箱退化相关度高的多个特征.通过核熵成分分析方法在高维空间中进行主元分析,选取信息保有量较大的主元,达到数据降维的目的.随后,使用维纳过程对风电齿轮箱的剩余寿命进行预测.以河北某风场实际数据为例,结果表明:分别使用 3000、4000、5000个点进行预测时,提出方法的预测误差分别为12.72%、10.52%、6.05%,显著优于对比方法.
Remaining useful life prediction of wind power gearbox based on KECA and Wiener process
The gearbox is a key equipment of wind turbines,and once its performance deteriorates to a failure state,it can cause serious safety hazards.In order to accurately predict the remaining useful life of wind power gearbox,a remaining useful life prediction method based on kernel entropy component analysis and Wiener process is proposed.In data preprocessing,random forest algorithm is used to eliminate outliers and abnormal data,and Pearson algorithm is used to select multiple features with high correlation with gearbox degradation.By using the kernel entropy component analysis method to perform principal component analysis in high-dimensional space,the principal components with a large amount of information retention are selected to achieve the goal of data dimensionality reduction.Then,the residual life of the wind power gearbox is predicted using the Wiener process.Taking the actual data of a wind farm in Hebei province as an example,the results show that when using 3000,4000,and 5000 points for prediction,the prediction errors of the proposed method are 12.72%,10.52%,and 6.05%,respectively,which is significantly better than the comparison method.

wind power gearboxremaining useful life predictionkernel entropy component analysisWiener processrandom forest algorithm

许之胜、刘长良、徐健

展开 >

华北电力大学自动化系,河北保定 071003

保定市综合能源系统状态检测与优化调控重点实验室,河北保定 071003

风电齿轮箱 剩余寿命预测 核熵成分分析 维纳过程 随机森林算法

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(12)