首页|Hierarchical Task Planning for Power Line Flow Regulation
Hierarchical Task Planning for Power Line Flow Regulation
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
维普
万方数据
The complexity and uncertainty in power systems cause great challenges to controlling power grids.As a popu-lar data-driven technique,deep reinforcement learning(DRL)attracts attention in the control of power grids.However,DRL has some inherent drawbacks in terms of data efficiency and explainability.This paper presents a novel hierarchical task planning(HTP)approach,bridging planning and DRL,to the task of power line flow regulation.First,we introduce a three-level task hierarchy to model the task and model the sequence of task units on each level as a task planning-Markov decision processes(TP-MDPs).Second,we model the task as a sequential decision-making problem and introduce a higher planner and a lower planner in HTP to handle different levels of task units.In addition,we introduce a two-layer knowledge graph that can update dynamically during the planning procedure to assist HTP.Experimental results conducted on the IEEE 118-bus and IEEE 300-bus systems demonstrate our HTP approach outperforms proximal policy optimization,a state-of-the-art deep reinforcement learning(DRL)approach,improving efficiency by 26.16%and 6.86%on both systems.
Knowledge graphpower line flow regulation reinforcement learningtask planning