首页|基于分层关联性建模的分布式光伏功率超短期概率预测

基于分层关联性建模的分布式光伏功率超短期概率预测

扫码查看
准确的区域分布式光伏功率概率预测可为有源配电网优化运行提供更全面的信息支撑.当缺乏气象测量或预报数据时,对分布式光伏时空相关信息的挖掘利用可以有效提升功率预测精度,然而,现有研究或难以针对性挖掘时空关联信息,或在建模过程中丢失大量有效信息.为此,提出了一种基于分层关联建模的区域分布式光伏功率超短期概率预测方法.首先,采用基于深度一致性的聚类方法对分布式光伏集群进行子区域划分,支撑对子区域内部时空关联的针对性建模;在此基础上,构建分层图结构以同步建模子域内与子域间时空关联关系,有效利用不同层级间关联信息;然后,提出了基于分层图卷积神经网络的概率预测模型,挖掘光伏电站之间的深度时空关联特征,提升区域分布式光伏超短期功率概率预测精度.最后,利用实际分布式光伏功率数据集验证了该方法的有效性.
Ultra-short-term Probabilistic Forecasting of Distributed Photovoltaic Power Generation Based on Hierarchical Correlation Modeling
Accurate probabilistic forecasting of regional distributed photovoltaic(PV)power can provide more comprehensive information support for the optimal operation of active distribution networks.When meteorological measurement or forecasting data is lacking,mining and utilizing spatio-temporal correlation information of distributed PV can effectively improve power forecasting accuracy.However,existing research either struggles to specifically mine spatio-temporal correlation information or loses a significant amount of valuable information during the modeling process.To address this,a method for ultra-short-term probabilistic forecasting of regional distributed PV power based on hierarchical correlation modeling is proposed.Firstly,a clustering method based on deep consistency is employed to divide the distributed PV clusters into subregions,which supports targeted modeling of the spatio-temporal correlations within the subregions.On this basis,a hierarchical graph structure is constructed to simultaneously model the intra-subregion and inter-subregion spatio-temporal correlations,enabling effective utilization of correlation information across different hierarchical levels.Then,a probabilistic forecasting model based on hierarchical graph convolutional neural networks(GCNs)is proposed to mine deep spatio-temporal correlation features between PV power stations,thereby enhancing the accuracy of ultra-short-term probabilistic forecasting of regional distributed PV power.Finally,the effectiveness of the proposed method is validated using actual distributed PV power data sets.

distributed photovoltaicprobabilistic forecastinghierarchical association modelingdeep temporal and spatial correlation

陈璨、苏紫诺、马原、刘佳林、王玉庆、王飞

展开 >

国网冀北电力有限公司电力科学研究院,北京 100045

华北电力大学电力工程系,河北 保定 071003

新能源电力系统全国重点实验室(华北电力大学),北京 102206

河北省分布式储能与微网重点实验室(华北电力大学),河北 保定 071003

展开 >

分布式光伏 概率预测 分层关联建模 深层时空关联性

2024

中国电力
国网能源研究院 中国电机工程学会

中国电力

CSTPCD北大核心
影响因子:1.463
ISSN:1004-9649
年,卷(期):2024.57(12)