电子科技学刊2024,Vol.22Issue(1) :53-69.DOI:10.1016/j.jnlest.2024.100244

Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction

Jia-Jun Zhong Yong Ma Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei
电子科技学刊2024,Vol.22Issue(1) :53-69.DOI:10.1016/j.jnlest.2024.100244

Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction

Jia-Jun Zhong 1Yong Ma 1Xin-Zheng Niu 1Philippe Fournier-Viger 2Bing Wang 3Zu-kuan Wei1
扫码查看

作者信息

  • 1. School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu,611731,China
  • 2. College of Computer Science&Software Engineering,Shenzhen University,Shenzhen,518060,China
  • 3. School of Computer Science,Southwest Petroleum University,Chengdu,610500,China
  • 折叠

Abstract

Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model's accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.

Key words

Graph neural network/Multi-head attention mechanism/Spatio-temporal dependency/Traffic flow prediction

引用本文复制引用

基金项目

国家自然科学基金(62272087)

四川省科技计划(2023YFG0161)

出版年

2024
电子科技学刊
电子科技大学

电子科技学刊

影响因子:0.154
ISSN:1674-862X
参考文献量33
段落导航相关论文