电子科技学刊2024,Vol.22Issue(2) :1-15.DOI:10.1016/j.jnlest.2024.100249

Efficient ECG classification based on Chi-square distance for arrhythmia detection

Dhiah Al-Shammary Mustafa Noaman Kadhim Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb
电子科技学刊2024,Vol.22Issue(2) :1-15.DOI:10.1016/j.jnlest.2024.100249

Efficient ECG classification based on Chi-square distance for arrhythmia detection

Dhiah Al-Shammary 1Mustafa Noaman Kadhim 1Ahmed M.Mahdi 1Ayman Ibaida 2Khandakar Ahmedb2
扫码查看

作者信息

  • 1. College of Computer Science and Information Technology,University of Al-Qadisiyah,Al Diwaniyah,58001,Iraq
  • 2. Intelligent Technology Innovation Lab,Victoria University,Melbourne,3011,Australia
  • 折叠

Abstract

This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier's performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier's capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98%with PSO,higher than 89%achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.

Key words

Arrhythmia classification/Chi-square distance/Electrocardiogram(ECG)signal/Particle swarm optimization(PSO)

引用本文复制引用

出版年

2024
电子科技学刊
电子科技大学

电子科技学刊

影响因子:0.154
ISSN:1674-862X
段落导航相关论文