首页|基于血管生成因子构建并验证子宫内膜癌风险预后模型

基于血管生成因子构建并验证子宫内膜癌风险预后模型

扫码查看
目的 探讨血管生成因子(angiogenic factors,AFs)与子宫内膜癌(endometrial cancer,EC)预后风险的关系,构建并验证基于AFs相关基因的EC患者预后模型。方法 从癌症基因组图谱(TCGA)数据库下载EC患者基因表达谱数据和临床资料,采用limma包筛选差异表达的AFs基因。采用单因素回归分析筛选与552例EC患者预后相关的AFs。将TCGA整体人群依据1∶1比例分成测试集和验证集,基于训练集人群进行Lasso回归分析构建风险预后模型。利用K-M生存分析、ROC曲线分析测试集和验证集中预后模型的预测准确性。基于AFs相关基因预后模型和临床特征因素建立诺莫图。结果 构建并验证了基于7个AFs相关基因(NR3C1、TNFRSF18、MAL、CDKN2A、PROS1、ASB2和GRB14)的EC预后模型。K-M曲线分析显示,高风险评分患者较低风险评分患者预后更差(P<0。05)。ROC曲线分析显示,在测试集、验证集及整个队列入群中该预后模型的5年生存预测AUC值分别为0。829、0。756和0。790。GESA富集分析显示,与低风险患者相比,高风险患者在细胞周期、DNA复制、ERBB信号通路等有显著富集(P<0。05)。基于AFs相关基因和临床特征因素构建了诺莫图,校准曲线评估其预测准确性较好。结论 本研究构建并验证了一种基于AFs相关基因的EC患者预后模型,该模型可以用于精准预测EC患者的预后,并基于独立预后因素构建诺莫图,有助于协助临床医生判断患者预后并做出最佳临床决策。
Constructing and validating a risk prognosis model for endometrial cancer based on angiogenic factors
Objective To explore the relationship between angiogenic factors(AFs)and the prognostic risk of endometrial cancer(EC),and to construct and validate a prognostic model for EC patients based on AFs related genes.Methods Download gene expression profile data and clinical data of EC patients(552 cases)from the TCGA database,and further use limma package to screen for differentially expressed AFs genes.Single factor regression analysis was used to screen for AFs related to the prognosis of EC patients,and the TCGA population was further divided into a test set and a validation set in a 1∶1 ratio.Based on the training set population,Lasso regression analysis was conducted to construct a risk prognosis model.K-M survival analysis,ROC curve,and other methods were used to analyze the test set and validate the predictive accuracy of the centralized prognosis model.Finally,a Nomogram was established based on the AFs related gene prognosis model and clinical characteristic factors.Results We constructed and validated an EC prognostic model„ for 7 AFs related genes(NR3C1,TNFRSF18,MALs,CDKN2A,PROS1,ASB2,and GRB14).K-M curve analysis suggests that patients with higher risk scores have poorer prognosis compared to those with lower risk scores(P<0.05).The ROC curve analysis results indicate that the 5-year survival prediction AUC values of the prognostic model in the test set,validation set,and the entire cohort population are 0.829,0.756,and 0.790,respectively.GESA enrichment analysis showed that compared with low-risk patients,high-risk patients showed significant enrichment in cell cycle,DNA replicatión,and ERBB signaling pathway(P<0.05).A Nomogram was constructed based on AFs related genes and clinical feature factors,and the calibration curve was used to evaluate its predictive accuracy.Conclusions This study constructed and validated a prognostic model for EC patients based on AFs related genes.The model can be used to accurately predict the prognosis of EC patients,and a Nomogram diagram based on independent prognostic factors can be constructed to assist clinical doctors in accurately judging patient prognosis and making the best clinical decisions.

endometrial cancerangiogenic factorsrisk prognosis modelnomogram

张果、杨潇、王建六

展开 >

北京大学人民医院妇产科,北京 100044

子宫内膜癌 血管生成因子 风险预后模型 诺莫图

国家自然科学基金青年基金

82203646

2024

中国妇产科临床杂志
北京大学

中国妇产科临床杂志

CSTPCD北大核心
影响因子:1.095
ISSN:1672-1861
年,卷(期):2024.25(2)
  • 18