首页|基于专利数据挖掘的国内外专利推荐技术研究现状与未来优化方向

基于专利数据挖掘的国内外专利推荐技术研究现状与未来优化方向

扫码查看
本文旨在深入挖掘专利数据中蕴含的特征信息和关联关系,全面梳理和分析专利推荐技术的研究现状,系统总结研究的重点、难点以及未来的研究方向,以促进专利推荐系统的优化.通过采用文献调研法和内容分析法,本文概述了 20 世纪初至今关于专利特征选择和推荐技术方法的相关研究,并对其进行阶段性的发展分析.针对当前专利推荐的研究现状,总结和评述了现有研究的不足之处,并展望了未来的优化方向.目前,专利推荐技术中的特征选择大多停留在显性特征,未能充分挖掘数据中的隐性特征.此外,尽管现有研究经历了单一图结构、深度学习模型到二者相结合的转变,但在可解释性方面仍存在一定的不足.未来的优化方向应致力于提升深度学习模型的可解释性,并深入挖掘数据中的隐性特征信息.
Research Status and Future Optimization Direction of Domestic and Foreign Patent Recommendation Technology Based on Patent Data Mining
The purpose of this paper is to deeply excavate the feature information and correlation relationship embedded in patent data,comprehensively sort out and analyse the current research status of patent recommendation technology,and systematically summarise the key points and difficulties of the research as well as the future research direction,so as to promote the optimization of patent recommendation system.By adopting the literature research method and content analysis method,this paper outlines the relevant researches on patent feature selection and recommendation technology methods from the beginning of the 20th century to the present,and analyses their stage-by-stage development.In view of the current research status of patent recommendation,it summarises and reviews the shortcomings of the existing research and looks forward to the future optimization direction.At present,most of the feature selection in patent recommendation technology stays in explicit features and fails to fully explore the implicit features in the data.In addition,although the existing research has experienced the transformation from single graph structure,deep learning model to the combination of the two,there are still some deficiencies in terms of interpretability.The future optimization direction should be devoted to improving the interpretability of deep learning models and deeply mining the implicit feature information in the data.

patent recommendationpatent featuredeep learninggraph structure

陈嘉濠、胡伟、贺芯、胡淼、陈蔚琦、刘晓勇

展开 >

广东技术师范大学,广州 510665

专利推荐 专利特征 深度学习 图结构

国家自然科学基金广东省自然科学基金面上项目

621721132023A1515010939

2024

中国发明与专利
知识产权出版社,中国发明协会

中国发明与专利

CSTPCD
影响因子:0.15
ISSN:1672-6081
年,卷(期):2024.21(4)
  • 52