首页|基于全连接神经网络的专利价值评价模型构建与实证研究

基于全连接神经网络的专利价值评价模型构建与实证研究

Construction and Empirical Study of Patent Value Evaluation Model Based on Fully Connected Neural Networks

扫码查看
本研究旨在构建一种专利价值评价模型,以批量化识别和筛选具有市场转化潜力的专利,提升专利管理效率和促进专利技术的市场应用.本研究采用多元统计分析和人工神经网络方法,通过关键指标初筛、主成分分析法降维等操作步骤,构建了包含输入层、两个隐藏层和输出层的多层感知机(MLP)模型.采用十折交叉验证优化召回率和精确率.结果表明,该模型能够实现专利价值度的有效评价,通过对深圳市"20+8"产业专利进行实证检验,模型显示所评价的专利普遍具有较高的价值度,其中A级及以上专利占比达到 11.27%,B级及以上专利占比为41.82%.
This study aims to construct a patent value evaluation model that can batch identify and filter patents with market transformation potential,which improves patent management efficiency and promotes the market application of patent technology.The study employs multivariate statistical analysis and artificial neural network methods,including preliminary screening of key indicators and dimensionality reduction using principal component analysis,ultimately constructing a multi-layer perceptron(MLP)model with an input layer,two hidden layers,and an output layer.The model is optimized for recall and precision using ten-fold cross-validation.The results indicate that the model can effectively predict the value of patents.Through empirical testing of"20+8"industries patents in Shenzhen,it was found that tested patents generally have a higher value,with A-level and above patents accounting for 11.27%,and B-level and above patents accounting for 41.82%.

patent valueevaluation modelmulti-layer perceptronmachine learning

范蕾、马婷、梁康、魏子翔

展开 >

中国船舶集团有限公司综合技术经济研究院,北京 100081

中国船舶集团有限公司知识产权与成果管理研究中心,北京 100081

专利价值 评价模型 多层感知机 机器学习

国家知识产权局软科学研究项目中国(深圳)知识产权保护中心

SS23-B-16UHOSZC20230108

2024

中国发明与专利
知识产权出版社,中国发明协会

中国发明与专利

CSTPCD
影响因子:0.15
ISSN:1672-6081
年,卷(期):2024.21(8)
  • 15