首页|深度学习在子宫内膜癌术后临床靶区自动分割中的应用

深度学习在子宫内膜癌术后临床靶区自动分割中的应用

扫码查看
目的 评估 3种深度学习(DL)算法在子宫内膜癌(EC)术后患者高剂量率近距离放射治疗(high-dose-rate bra-chytherapy,HDR BT)中,自动分割临床靶区(CTV)的应用结果.方法 数据集由 306 名子宫内膜癌术后患者的计算机断层扫描(CT)图像组成,按比例分为训练集(246例)、验证集(30例)和测试集(30例).比较 3种深度卷积神经网络模型(3D U-Net、3D Res U-Net和V-Net)在CTV分割上的性能.采用定量指标分别为戴斯相似性系数(DSC)、豪斯多夫距离(HD)、豪斯多夫距离第 95 百分位数(HD95%)和交并比(IoU).结果 在测试阶段中,3D U-Net、3D Res U-Net和V-Net分割CTV得到的DSC平均值分别为 0.90±0.07、0.95±0.06 和 0.95±0.06;HD平均值(mm)分别为2.51±1.70、0.96±1.01和 0.98±0.95;HD95%平均值(mm)分别为 1.33±1.02、0.65±0.91和 0.40±0.72,IoU平均值分别为 0.85±0.11、0.91±0.09 和 0.92±0.09.其中,V-Net分割结果与高级临床医生勾画结果更接近,CTV的分割时间<3.2 s,节省了临床医生的工作时间.结论 V-Net在CTV分割方面表现最佳,定量指标和临床评估均优于其他模型.该方法与基准真实值高度一致,有效减少医生间差异,缩短治疗时间.
Application of deep learning in automatic segmentation of clinical target volume in brachytherapy after surgery for endometrial carcinoma
Objective To evaluate the application of three deep learning algorithms in automatic segmentation of clinical target volumes(CTVs)in high-dose-rate brachytherapy after surgery for endometrial carcinoma.Methods A dataset com-prising computed tomography scans from 306 post-surgery patients with endometrial carcinoma was divided into three sub-sets:246 cases for training,30 cases for validation,and 30 cases for testing.Three deep convolutional neural network mod-els,3D U-Net,3D Res U-Net,and V-Net,were compared for CTV segmentation.Several commonly used quantitative met-rics were employed,i.e.,Dice similarity coefficient,Hausdorff distance,95th percentile of Hausdorff distance,and Intersec-tion over Union.Results During the testing phase,CTV segmentation with 3D U-Net,3D Res U-Net,and V-Net showed a mean Dice similarity coefficient of 0.90±0.07,0.95±0.06,and 0.95±0.06,a mean Hausdorff distance of 2.51±1.70,0.96±1.01,and 0.98±0.95 mm,a mean 95th percentile of Hausdorff distance of 1.33±1.02,0.65±0.91,and 0.40±0.72 mm,and a mean Intersection over Union of 0.85±0.11,0.91±0.09,and 0.92±0.09,respectively.Segmentation based on V-Net was similarly to that performed by experienced radiation oncologists.The CTV segmentation time was<3.2 s,which could save the work time of clinicians.Conclusion V-Net is better than other models in CTV segmentation as indicated by quantitative metrics and clinician assessment.Additionally,the method is highly consistent with the ground truth,reducing inter-doctor variability and treatment time.

Deep learning modelPostoperative endometrial carcinomaHigh-dose-rate brachytherapyAuto-segmenta-tion of CTV

薛娴、王凯玥、梁大柱、丁静静、江萍、孙全富、程金生、戴相昆、付晓沙、朱静洋、周付根

展开 >

中国疾病预防控制中心辐射防护与核安全医学所,北京 100088

北京大学第三医院放疗科,北京 100089

东北大学,辽宁沈阳 110819

中国人民解放军总医院放疗科,北京 100039

谢菲尔德哈勒姆大学,英国谢菲尔德S11WB

北京忠诚肿瘤医院肿瘤科,北京 100161

北京航空航天大学,北京 100083

展开 >

深度学习模型 子宫内膜癌术后 高剂量率近距离放射治疗 临床靶区自动分割

2024

中国辐射卫生
中华预防医学会 山东省医科院放射医学研究所

中国辐射卫生

CSTPCD
影响因子:0.35
ISSN:1004-714X
年,卷(期):2024.33(4)