首页|基于GA-BP神经网络和改进粒子群算法的碰撞射流和冷却顶板复合空调系统优化

基于GA-BP神经网络和改进粒子群算法的碰撞射流和冷却顶板复合空调系统优化

扫码查看
对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感RPD,头足温差 △t,空气交换效率eACE,工作区平均温度ta)与设计变量(送风温度t、送风速度v、冷却顶板内表面温度tc、房间负荷Q c)之间的预测模型,通过相关性分析确定设计变量对运行性能影响的显著性并排序.结果表明,增大vs可使△t降低,但RPD增大;增大tc有助于降低△t和RPD,但ta升高;为使ta下降,可通过降低ts来实现,但室内空气质量变差.为确保IJV/RC复合空调能在保证室内热舒适的同时提供良好室内空气品质,利用改进粒子群算法对复合空调的运行性能进行多 目标同时优化,建立不同房间负荷条件下的设计参量最优匹配关系.研究结果可为IJV/RC复合空调的优化设计和运行控制提供理论指导.
Optimization of impinging jet ventilation combined with chilled ceiling air-conditioning system based on GA-BP neural network coupled with improved particle swarm optimization
The indoor thermal environment for the impinging jet ventilation combined with radiant ceiling(IJV/RC)air-conditioning system with different operating load conditions was simulated.The GA-BP neural network was applied to develop the predictive models between the operating performance(draught discomfort R PD,temperature difference between the head and ankle level △t,air change efficiency eACE,and average temperature of operation ta)and design variables(supply temperature ts,supply velocity vs,chilled ceiling temperature tc,and room load Qc).The significance of each design variable on the studied operating performance was determined and ranked through correlation analysis.The results show that △t decreases with the increase of vs,but the value of RPD increases accordingly.The increase of tc is helpful for the decrease of △t and RPD,but the value of ta increases.The decrease of ta can be achieved by reducing ts,but the indoor air quality becomes worse.To achieve the goals of providing good indoor air quality and indoor thermal comfort,a multi-objective optimization for the IJV/RC was conducted by applying the improved particle swarm optimization(PSO)algorithm,and the optimal combinations of the studied design variables corresponding to the room loads were developed.The current results can provide theoretical guidance for the design and operation control for the IJV/RC system.

impinging jet ventilationchilled ceilingGA-BP neural networkparticle swarm optimization algorithmmulti-objective optimization

齐贺闯、叶筱、高延峰、亢燕铭、钟珂

展开 >

上海工程技术大学机械与汽车工程学院,上海

上海市大型构件智能制造机器人技术协同创新中心,上海

东华大学环境科学与工程学院,上海

碰撞射流通风 冷却顶板 GA-BP神经网络 粒子群优化算法 多目标优化

国家自然科学基金资助项目上海市青年科技英才扬帆计划资助项目

5147809821YF1415500

2024

东华大学学报(自然科学版)
东华大学

东华大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.308
ISSN:1671-0444
年,卷(期):2024.50(1)
  • 19