首页|一类分数阶时滞微分系统的精确解及Hyers-Ulam 稳定性

一类分数阶时滞微分系统的精确解及Hyers-Ulam 稳定性

扫码查看
为拓展整数阶微分系统的已有结果,研究了 一类具有多个时滞的Caputo分数阶线性微分系统.运用不可交换矩阵的多项式定理,在不要求系数矩阵可交换的前提下,得到了系统的精确解表示.研究结果表明,该系统在有限时间内Hyers-Ulam稳定.
Exact solution and Hyers-Ulam stability of a class of fractional delay differential systems
To extend the existing results of differential systems of integer order,we have considered a class of Caputo fractional linear differential systems with multiple delays.By applying the multinomial theorem for nonpermutable matrices without a commutativity assumption on the matrix coefficients,the representations of exact solutions for the studied systems were obtained.The results show that Hyers-Ulam stability in finite time holds for this class of systems.

time delay systemHyers-Ulam stabilityLaplace transformCaputo fractional derivativenonpermutable matrixexact solution

邬忆萱、寇春海

展开 >

东华大学理学院,上海

时滞系统 Hyers-Ulam稳定 Laplace变换 Caputo分数阶导数 不可交换矩阵 精确解

上海市自然科学基金

19ZR1400500

2024

东华大学学报(自然科学版)
东华大学

东华大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.308
ISSN:1671-0444
年,卷(期):2024.50(1)
  • 28