首页|基于边缘计算的海上养殖鱼群实时追踪系统

基于边缘计算的海上养殖鱼群实时追踪系统

扫码查看
为解决实际养殖环境中存在鱼群数据集少、追踪算法效果不稳定、追踪部署成本高等问题,结合鱼群行为数据、鱼群追踪算法和边缘计算平台3方面建立一套基于边缘计算的鱼群实时追踪系统.采集并标注养殖环境中的金鲳鱼视频以建立鱼群行为数据集;提出基于检测的鱼群追踪算法FishTrack,改进追踪轨迹的关联策略,以减少因鱼群姿态变换和长期遮挡导致的目标丢失;将FishTrack部署在轻量级边缘计算设备上,保证追踪效果的同时降低了计算成本.研究结果表明:FishTrack在金鲳鱼数据集上的追踪准确率可达72.95%,比当前主流追踪算法ByteTrack的目标交换错误率降低了83%;实时追踪速度为平均7.40帧/s,适用于真实生产环境中鱼群的实时追踪.
Real-time fish tracking system based on edge computing for marine farming
Scarce fish dataset for aquaculture,an unstable tracking algorithm,and high costs all hinder the technique from being deployed.To solve these problems,a high-performance and real-time fish tracking system was built based on three aspects:fish behavior data,the fish tracking algorithm,and the edge computing platform.In terms of data,the pomfret tracking dataset was collected and labeled on pomfret activity video from the breeding environment.A detection-based fish tracking algorithm named FishTrack was proposed,which enhanced the object association strategy to reduce the tracking lost caused by pose change and long-time occlusion.The FishTrack was deployed on the lightweight edge platform enabling high performance with low computational costs.The results show that FishTrack achieves the tracking accuracy of 72.95%and reduces identification switch of ByteTrack by 83%.Moreover,the tracking system works with a running speed of 7.40 frame/s,which is suitable for real-time tracking under production environment.

fish tracking systemdeep learningedge computingmultiple object trackingobject detection

胡宏玮、陈昭、王倩、刘国华

展开 >

东华大学 计算机科学与技术学院,上海

鱼群追踪系统 深度学习 边缘计算 多目标追踪 目标检测

中央高校基本科研业务费专项

22D111211

2024

东华大学学报(自然科学版)
东华大学

东华大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.308
ISSN:1671-0444
年,卷(期):2024.50(5)