中国高等学校学术文摘·林学2009,Vol.4Issue(3) :363-367.DOI:10.1007/s11461-009-0054-y

Remote sensing monitoring of a bamboo forest based on BP neural network

Yongjun SHI Xiaojun XU Huaqiang DU Guomo ZHOU Wei JIN Yufeng ZHOU
中国高等学校学术文摘·林学2009,Vol.4Issue(3) :363-367.DOI:10.1007/s11461-009-0054-y

Remote sensing monitoring of a bamboo forest based on BP neural network

Yongjun SHI 1Xiaojun XU 1Huaqiang DU 1Guomo ZHOU 1Wei JIN 1Yufeng ZHOU1
扫码查看

作者信息

  • 1. School of Environmental Sciences and Technology, Zhejiang Forestry College, Lin'an 311300, China
  • 折叠

Abstract

The collection of information on bamboo forests plays a crucial role in the calculation of carbon content reserves, and the acquisition of high-precision information will be good for reducing estimation errors. High precision is obtained with the adoption of a back propagation (BP) neural network to extract information on bamboo forests from Enhanced Thematic Mapper + (ETM +) remote sensing images with the assistance of neural network modules provided by Matlab. We obtained a production precision of 84.04% and a user precision of 98.75%. We also conducted a comparison of classification differences of three training functions, i.e., the, LevenbergMarquardt BP algorithm function (Trainlm), a gradient decreasing function of adaptive learning rate BP (Traingda), and a gradient lowering momentum BP algorithm function (Traingdm). Our analysis suggests that Traingda had the highest precision while Trainlm function required the shortest training time.

Key words

forest management/Back Propagation (BP) neural network/bamboo forest/classification/remote sensing/Enhanced Thematic Mapper + (ETM +)

引用本文复制引用

基金项目

国家自然科学基金(30700638)

国家自然科学基金(30771725)

出版年

2009
中国高等学校学术文摘·林学
高等教育出版社

中国高等学校学术文摘·林学

ISSN:1673-3517
参考文献量6
段落导航相关论文