首页|基于状态转移回归的动态集成时序预测方法

基于状态转移回归的动态集成时序预测方法

扫码查看
最优模型子集的确定和集成权重的设置是组合预测中的两个重要问题,直接关系到组合模型的预测表现。为此,本文提出了一个基于状态转移回归的动态集成时序预测方法,首先基通过计算单体模型和原始数据之间的互信息确定最优模型子集;其次,通过状态转移回归实现单体模型的动态集成,并获得最终预测值。通过对9个国家的主权信用违约互换利差数据进行预测实验,本文发现所提出的状态转移组合预测模型表现良好,不仅优于一般单体预测模型和组合预测模型,还优于基于滑动窗口技术的动态组合预测模型。
Dynamic Ensemble Time Series Forecasting Model Based on Regime-switching Regression
The determination of optimal individual model sets and the setting of ensemble weights are two criti-cal problems for ensemble forecasting,which are related to the prediction performance of the ensemble model.On the one hand,the prediction performance of individual model is unstable and the static ensemble prediction model cannot fully exploit the prediction advantages of individual models;on the other hand,ergodic method to determine the optimal model subset is faced with high computational complexity.To this end,a dynamic ensemble forecasting model is proposed with a regime-switching regression method.First,the optimal individual model set is determined by calculating the mutual information between the individual forecasts and the original data;second,the regime-switching regression is used to ensemble the individual forecasts and get the final prediction values.Through the prediction experiments on the sovereign credit default swaps in nine sample countries,it is found that the proposed regime-switching regression ensemble model performs well,not only better than the individual and combination prediction models but also better than the sliding window technology dynamic combination forecasting model.

combination forecastdynamic ensembleregime-switchingmutual information

冯倩倩、孙晓蕾、郝俊

展开 >

山东大学管理学院,山东 济南 250100

中国科学院科技战略咨询研究院,北京 100190

中国科学院大学经济与管理学院,北京 100190

组合预测 动态集成 状态转移回归 互信息

国家自然科学基金项目国家自然科学基金项目中国博士后科学基金项目中国博士后科学基金项目

72071197722012652023T1606352022M723105

2024

中国管理科学
中国优选法统筹法与经济数学研究会 中科院科技政策与管理科学研究所

中国管理科学

CSTPCDCSSCICHSSCD北大核心
影响因子:1.938
ISSN:1003-207X
年,卷(期):2024.32(2)
  • 31