首页|需求预测视角下的医疗数据价值——基于沙普利值方法

需求预测视角下的医疗数据价值——基于沙普利值方法

扫码查看
数字技术的飞速发展推进了全球数字化进程。数据作为推动经济发展的重要资源,其价值评估尚未形成统一范式。随着数据规模增长,数据质量良莠不齐、数据失真也是亟待解决的问题。数据价值评估有利于评估数据质量、筛选失真数据、推进数据融通,其重要性不言而喻。本文基于在线医疗平台背景,利用沙普利值方法评估医患匹配场景下的数据价值,借助评估结果提高平台中的数据价值利用效率。首先,平台在事前利用医生历史问诊特征,使用XGBoost模型对不同医生的未来一年的问诊需求进行预测。进一步,根据医疗平台线上服务模式构建医院根据预测结果的运营收益函数,形成数据-模型-收益的价值链条。最后,使用沙普利值方法评估数据价值,验证价值评估方法的有效性,分析平台高价值数据特征。研究发现:沙普利值能根据任务更有目的性地捕获数据价值;平台依据沙普利值进行数据筛选能实现模型的降本增效,提升数据价值的释放效率;同时沙普利值也能捕捉平台中的虚假数据,改善数据质量。因此,对数据价值进行适当评估有助于平台的业务理解,提升数据价值释放效率。
Research on Data Value Based on Demand Forecast of Online Medical Platform
The rapid development of digital technology has advanced global digitalization.As a vital resource for driving economic growth,the value assessment of data has not yet formed a unified paradigm.With the expansion of data scale,the data quality disparity and data distortion urgently need to be addressed.The valua-tion of data is considered beneficial for evaluating data quality,filtering out distorted data,and promoting data trade,making its importance self-evident.In this paper,an online medical platform is used as the context,and the Shapley value method is employed to evaluate the value of data in doctor-patient matching.The efficiency of data value on the platform is intended to be improved through the data valuation results.First,the demand of doctors for the next year is predicted through the historical characteristics of doctors and the XGBoost model.Second,an operational profit function of hospitals based on the prediction results is constructed according to the online service mode of the medical platform,forming a value chain of data,model,and benefit.Finally,the Shapley value is used to assess data value,the effectiveness of the value assessment method is validated,and the characteristics of high-value data on the platform are analyzed.It is found that data value can be captured according to the task by the Shapley value.Cost reduction and efficiency increase of the model can be realized by filtering data based on the Shapley value,then enhancing the efficiency of application of data.Additionally,false data on the platform can be find,improving data quality.Therefore,appropriate valuation of data is seen as beneficial for better business understanding of the platform and enhancement of the efficiency of data.

data valuationonline medical platformShapley value

赵越、王衍之、宋洁、何璇

展开 >

北京大学工学院工业工程与管理系 北京 100871

数据价值 在线医疗平台 沙普利值

国家自然科学基金重点项目国家自然科学基金重点项目国家自然科学基金应急管理项目

721310017173100672241420

2024

中国管理科学
中国优选法统筹法与经济数学研究会 中科院科技政策与管理科学研究所

中国管理科学

CSTPCDCSSCICHSSCD北大核心
影响因子:1.938
ISSN:1003-207X
年,卷(期):2024.32(7)