首页|非对称通行条件下的双向绿波协调控制数解算法

非对称通行条件下的双向绿波协调控制数解算法

Algebraic Method of Bidirectional Green Wave Coordinated Control Under Asymmetric Traffic Conditions

扫码查看
为了解决现有绿波协调控制数解算法不适用于采用进口混合放行方式或双向通行条件不对称的干道交叉口群的问题,利用速度变换与相位组合的方法,给出了非对称通行条件下的双向绿波协调控制数解算法.该算法利用时距分析图计算理想交叉口间距,通过寻求与实际交叉口位置最为匹配的理想交叉口位置,对干道公共信号周期、交叉口信号相位组合和各交叉口相位差进行整体优化设计.理论与算例分析结果表明:该算法不会受到干道上交叉口信号相位设置方式、双向行驶速度及交叉口双向间距的限制,能较好地适应干道不同方向上的非对称通行条件,可以使理想交叉口间距取值具有更大的选取空间,易于取得更好的双向绿波协调控制效果,具有良好的通用性与广泛的适用范围.
To solve the problem that the existing algebraic methods of green wave coordinated control were not suitable for the arterial road intersections in mixed entrance signal phase modes or under asymmetric bidirectional traffic conditions,a new algebraic method of bidirectional green wave coordinated control under asymmetric traffic conditions was presented by making use of velocity transformation and phase combination method.The ideal intersection spacing was calculated by time-space diagram in this method,and the common signal cycle,the signal phase combination and the signal offsets were wholly optimized through seeking the ideal intersection positions matching with the actual ones.The results show that the method not only gets rid of the restrictions of signal phase mode in arterial road intersections,bidirectional traffic velocity and bidirectional intersection spacing,but also adapts to the asymmetric traffic conditions in different directions of arterial road preferably.It can select the ideal intersection spacing in a larger range and can easily obtain better coordinated control effect of bidirectional green wave than others,which has good universality and extensive scope of application.

traffic engineeringbidirectional green wavealgebraic methodasymmetricsignal phasecoordinated control

卢凯、刘永洋、吴焕、黄江辉

展开 >

华南理工大学土木与交通学院,广东广州 510641

华南理工大学自主系统与网络控制教育部重点实验室,广东广州 510641

华南理工大学电力学院,广东广州 510640

交通工程 双向绿波 数解算法 非对称 信号相位 协调控制

国家自然科学基金广东省自然科学基金广州市珠江科技新星专项项目中央高校基本科研业务费专项资金项目

61203164S20120400079982013J22000662013ZZ0020

2015

中国公路学报
中国公路学会

中国公路学报

CSTPCDCSCD北大核心EI
影响因子:1.607
ISSN:1001-7372
年,卷(期):2015.28(6)
  • 17
  • 4