首页|基于MobileViT-CA模型的营运车辆驾驶人分心行为检测

基于MobileViT-CA模型的营运车辆驾驶人分心行为检测

扫码查看
营运车辆驾驶人因其职业特殊性,驾驶过程中易产生分心驾驶行为从而引发重大交通事故.为提高营运车辆驾驶人分心驾驶行为的检测准确性和泛化性,提出一种基于改进MobileViT网络的驾驶人分心行为检测方法.首先,基于自然驾驶实车试验,构建包含安全驾驶、使用手机、喝水、整理仪容和与副驾驶交谈5类行为的营运车辆驾驶人分心行为数据集.其次,将注意力机制引入轻量型MobileViT网络,通过选择有效的网络主干MobileViT、注意力模块CA、网络嵌入位置从而设计出最优分类模型MobileViT-CA.研究结果表明:所提出的MobileViT-CA分类模型可以有效提升分类网络的性能,在正常光照条件下的营运车辆驾驶人分心行为数据集和State Farm数据集上分别达到了96.57%和99.89%的准确率,且模型具有体积小、检测精度高的优势,有较高的可靠性和泛化能力.
Distracted Behavior Detection of Commercial Vehicle Drivers Based on the MobileViT-CA Model
Due to the particularity of their occupation,commercial vehicle drivers are prone to distracted driving behavior during driving,resulting in major traffic accidents.In order to improve the detection accuracy and generalization of distracted driving behavior of commercial vehicle drivers,we proposed a driver distraction behavior detection method based on the improved MobileViT network.Based on the natural driving real vehicle tests,we constructed a dataset of distracted behavior of commercial vehicles,including safe driving,using phone,drinking,hair or makeup and talking to copilot.Then,the attention mechanism was introduced into the lightweight MobileViT network.And the optimal classification model MobileViT-CA was designed by selecting effective network backbone MobileViT,attention module CA,and network embedding position.The research results show that the MobileViT-CA classification model proposed in this paper can effectively improve the performance of the classification network,and the accuracy of the distraction behavior dataset of commercial vehicle drivers and the State Farm dataset under normal lighting conditions reaches 96.57%and 99.89%,respectively.Meanwhile the model has the advantages of small size,high detection accuracy,high reliability and generalization ability.

traffic engineeringcommercial vehiclesdistracted driving behavior detectionMobi-leViT networksattention mechanisms

贺宜、鲁曼可、高嵩、曹博、李继朴

展开 >

武汉理工大学智能交通系统研究中心,湖北武汉 430063

交通工程 营运车辆 分心驾驶行为检测 MobileViT网络 注意力机制

国家重点研发计划项目国家自然科学基金面上项目

2021YFC300150252072292

2024

中国公路学报
中国公路学会

中国公路学报

CSTPCD北大核心
影响因子:1.607
ISSN:1001-7372
年,卷(期):2024.37(1)
  • 5