首页|基于轻量化网络与迁移学习的桥梁水下桩墩结构表观病害轮廓提取

基于轻量化网络与迁移学习的桥梁水下桩墩结构表观病害轮廓提取

扫码查看
水下桩墩作为桥梁结构的重要组成部分,由于其所处复杂的水文环境,通常会在其表面产生各种表观病害.现有的光学检测方法存在2个方面的问题:①水下图像模糊不清,色彩严重失真;②无法定量化识别病害尺寸大小,且检测效率低.针对这些问题,提出了图像融合增强算法与深度学习模型相结合的水下桩墩表观病害轮廓提取方法.首先,提出了一种基于点锐度权重的图像像素级融合算法,不仅能够融合2种单一增强图像,而且在保证有效色彩校正的同时还能显著提高图像的对比度.其次,对DeepLabv3+语义分割网络模型进行轻量化改进,使其保证精度的情况下,尽可能降低模型所需的权重参数量;随后采用陆上建筑结构中的表观病害公开数据集训练主干特征提取网络层,并采用迁移学习方法将其运用到 目标域的检测任务中.最后,利用水下试验与实际工程采集到的图像数据集对轻量化改进模型进行训练,建立起水下桩墩表观病害轮廓提取模型,然后对其进行验证与测试,并从3个方面进行了比较与讨论,即与其他5种常用算法的比较、图像融合前后的检测结果以及噪声影响,验证了所提出改进方法的鲁棒性和有效性.结果表明:提出的图像融合增强算法可以有效地增强病害图像轮廓的细节特征,且所提的轻量化改进模型不仅具有最高的识别精度,还能够保持较高的检测效率与鲁棒性,适合植入小型水下机器人中用于实际桥梁结构的水下桩墩表观病害轮廓的实时化、定量化检测.
Extracting Surface Defect Contours of Bridge Underwater Pile-pier Structures based on Lightweight Network and Transfer Learning
Underwater pile-pier structures are important components of bridges.Various surface defects occur on these structures due to their complex hydrological environment.Existing methods for the visual detection of such defects have two main issues:① Underwater images are blurred,and the colors are severely distorted;(2)the size of defects cannot be quantitatively identified,and the detection efficiency is low.To solve these problems,this paper proposes a method to extract the contours of underwater pile-pier surface defects by combining an image fusion enhancement algorithm with a deep learning model.First,a pixel-level image fusion algorithm based on point sharpness weights is used,which can fuse two single enhanced images as well as significantly improve image contrast while ensuring effective color correction.Second,the DeepLabv3+semantic segmentation network model is improved in terms of weight,such that the number of weight parameters required for the model can be reduced as much as possible while maintaining the accuracy.Next,an open-source dataset of surface defects in building structures is used to train the backbone feature extraction network layer,and the transfer learning method is applied to the detection task of the object domain.Finally,the image dataset collected from underwater experiments and practical engineering works is used to train the light-weight improved model,establish the underwater pile-pier surface defect contour extraction model,and then verify and test the models.In addition,comparisons focusing on three aspects,namely,comparison with five other commonly used algorithms,comparison of detection results with and without image fusion,and comparison with and without noise effects,are made to verify the robustness and effectiveness of the proposed method.The results show that the image fusion enhancement algorithm proposed in this paper can effectively enhance the detailed features of the defect image contours,and the light-weight improved model has the highest recognition accuracy and can maintain high detection efficiency and robustness.This implies that the proposed method is suitable for the quantitative detection of the surface defect contours of underwater pile-pier structures implanted in small underwater robots for practical bridge structures.

bridge engineeringunderwater structure detectionlightweight networktransfer learningbridge underwater pile-pier structuresurface defect

王威、姜绍飞、宋华霖、李朋泽、王圣贤、苏振恒

展开 >

福州大学土木工程学院,福建福州 350108

福州大学福建省土木工程多灾害防治重点实验室,福建福州 350108

桥梁工程 水下结构检测 轻量化网络 迁移学习 桥梁结构水下桩墩 表观病害

福建省自然科学基金重点项目福建省交通运输厅科技项目

2022J02016202301

2024

中国公路学报
中国公路学会

中国公路学报

CSTPCD北大核心
影响因子:1.607
ISSN:1001-7372
年,卷(期):2024.37(2)
  • 24