首页|基于近邻目标区域表征与CVAE的智能汽车测试场景生成方法

基于近邻目标区域表征与CVAE的智能汽车测试场景生成方法

扫码查看
基于场景的虚拟测试是研发高安全、高可靠智能汽车的必要手段,场景自动生成技术对于智能汽车测试场景库的构建(CVAE)具有重要意义.为此,针对多车动态测试场景,提出一种基于近邻目标区域表征(NORR)和条件变分自编码器(CVAE)的场景生成方法,实现复杂测试场景的快速生成以及对生成场景类型的控制.首先,针对高速公路场景特征,提出应用NORR方法对场景情境进行描述,将测试场景中关键车辆目标信息转化为尺度统一的灰度图像.接着,利用HighD自然车辆轨迹数据集提取大量场景片段,经过数据规范化处理后构建出真实场景库.在此基础上,以场景中车辆目标数量为条件参数,训练基于条件变分自编码器的生成模型,能够生成包含8条车辆轨迹的动态测试场景.通过计算生成样本集的匹配误差、覆盖度和不合理性3个指标,检验生成模型在样本真实性、多样性和合理性方面的表现.验证结果显示:①相比随机轨迹采样方法和基于GAN的生成模型,VAE模型生成的样本质量最好,其生成样本集的平均匹配误差小于5.22,覆盖度能达到57.2%,不合理样本比例仅为1.7%;②所提出的NORR方法有助于提高生成模型的场景生成效果;③CVAE模型能够在条件输入和生成结果之间建立关联性,通过调整条件参数可以改变生成场景中车辆目标数量.
Test Scenario Generation Method for Intelligent Vehicles Based on Neighbor Object Region Representation and Conditional Variational Autoencoder
Scenario-based virtual testing is a necessary approach to developing intelligent vehicles with high safety and reliability.Automatic scenario generation technology is valuable for constructing the test scenario library for intelligent vehicles.Therefore,a scenario generation method based on neighbor object region representation(NORR)and conditional variational autoencoder(CVAE)was developed for dynamic test scenarios with multivehicle to rapidly generate complex test scenarios and control the types of generated scenarios.First,the NORR method was developed to describe the highway scene situation,and the key information of vehicle objects in the test scenario was converted into grayscale images with uniform sizes.Next,the HighD dataset of naturalistic vehicle trajectories was used to extract many scene fragments,and the real-scene library was constructed after data normalization processing.Based on this,the CVAE-based generative model was trained with the number of vehicle objects in the scene as the conditional parameter,which could generate a dynamic test scenario containing eight vehicle trajectories.By calculating the matching error,coverage degree,and unreasonableness of the generated sample set,the performances of the generative model were analyzed in terms of sample authenticity,diversity,and rationality.The verification results show that ① compared with the random trajectory sampling method and generative adversarial network-based model,the quality of the scenario samples generated using the variational autoencoder model is the best.The average matching error of the generated samples is lower than 5.22,the coverage degree is up to 57.2%,and the proportion of unreasonable samples only accounts for 1.7%.② The proposed NORR method helps improve the scenario generation effect of generative models.③ The CVAE model can establish the correlation between the conditional input and the generated results.By adjusting the conditional parameter,the number of vehicle objects in the generated scene can be varied.

automotive engineeringtest scenario generationCVAEintelligent vehiclegenera-tive model

谈东奎、朱波、胡旭东

展开 >

合肥工业大学汽车工程技术研究院,安徽合肥 230009

汽车工程 测试场景生成 条件变分自编码器 智能车辆 生成模型

国家重点研发计划安徽省自然科学基金

2018YFB01051022208085QE153

2024

中国公路学报
中国公路学会

中国公路学报

CSTPCD北大核心
影响因子:1.607
ISSN:1001-7372
年,卷(期):2024.37(3)
  • 24