首页|基于最大熵正则化的桥梁动态称重算法与试验验证

基于最大熵正则化的桥梁动态称重算法与试验验证

扫码查看
车辆超载会对桥梁结构产生不可逆的损伤,降低桥梁的使用年限,严重时可直接导致桥梁垮塌.目前获取过桥车辆轴重的主要途径为商用桥梁动态称重系统.然而,商用桥梁动态称重系统的核心算法——Moses算法通过误差函数得到的轴重识别方程为病态方程,导致在轴距较近、路面较粗糙时存在过拟合的问题,而且进行轴重识别时未区分单个车轴轴重对轴重识别结果的贡献度,导致单轴轴重识别结果精度不高.为此,提出一种基于最大熵正则化的桥梁动态称重算法.首先,引入熵正则化项和与轴重分配相关的权重系数,建立误差函数;其次,计算误差函数的梯度,并将其代入非线性共轭梯度法的迭代公式,得到每个正则化参数对应的轴重;然后,将每个正则化参数对应的轴重代入Regińska公式中计算参数ψv,绘制λ-ψv曲线,得到曲线极小值对应的轴重,该轴重即为所需轴重值;最后,通过数值仿真和实桥测试验证最大熵算法识别结果的准确性和鲁棒性.结果表明:无论是数值仿真还是实桥测试,最大熵算法的轴重识别精度都优于Moses算法;尤其对于实桥测试,最大熵算法前轴的误差均值为27.1%,远低于Moses算法的36.3%.由此说明,新算法通过引入熵正则化项和权重系数,可以在一定程度上抑制方程的过拟合,消除部分动力效应干扰的影响,提高单轴轴重识别结果的精度,可以更好地应用于实际桥梁的车辆监管.
Bridge Weigh-in-motion System Based on Maximum Entropy Regularization
Overloaded vehicles can cause irreversible damage to a bridge structure,reduce its service life,and even lead to collapse.Generally,the primary method for weighing the vehicles crossing a bridge is the commercial bridge weigh-in-motion(BWIM)system.However,the core algorithm employed by this method(Moses'algorithm)produces ill-conditioned equations for axle load recognition,leading to overfitting problems when the axle spacing is close and the road surface is rough.Moreover,the axle load recognition process does not differentiate among the contributions of individual axle loads,resulting in less accurate single axle load recognition.To address this issue,this study proposed a novel BWIM algorithm based on maximum entropy regularization.In this algorithm,entropy regularization terms and weight coefficients related to axle load distribution are first employed to establish an error function.Next,the gradient of the error function is calculated and input into the iterative formula of the nonlinear conjugate gradient method to obtain the axle load corresponding to each regularization parameter.Finally,each axle load corresponding to the regularization parameter is input into Reginska's formula to calculate the parameter,draw the curve,and obtain the axle load corresponding to the minimum value of this curve,which is the desired axle load value.The accuracy and robustness of the maximum entropy algorithm's recognition results were verified through numerical simulation and field tests.The results show that the axle load recognition accuracy of the proposed maximum entropy algorithm is superior to that of Moses'algorithm.The field test results indicate that the average error of the front axle load obtained using the maximum entropy algorithm is 27.1%,significantly less than the 36.3%error obtained using Moses'algorithm.Collectively,these results illustrate that by employing the entropy regularization terms and weight coefficients,the proposed algorithm can suppress the overfitting of equations to an considerable extent,eliminate the influence of select measurement errors,and improve the accuracy of single axle load recognition results,making it more suitable for practical bridge vehicle load monitoring than Moses'method.

bridge engineeringbridge weigh-in-motionmaximum entropy regularizationaxle weight identificationregularization parameterfield test

张龙威、原璐琪、邓露、陈宁、袁帅华

展开 >

湖南科技大学土木工程学院,湖南湘潭 411201

湖南大学工程结构损伤诊断湖南省重点实验室,湖南长沙 410082

湖南大学 土木工程学院,湖南长沙 410082

桥梁工程 桥梁动态称重 最大熵正则化 轴重识别 正则化参数 实桥试验

湖南省自然科学基金工程结构损伤诊断湖南省重点实验室项目

2023JJ40290

2024

中国公路学报
中国公路学会

中国公路学报

CSTPCD北大核心
影响因子:1.607
ISSN:1001-7372
年,卷(期):2024.37(8)
  • 15