首页|基于视觉大模型和机器学习的非接触式车辆动态称重方法

基于视觉大模型和机器学习的非接触式车辆动态称重方法

扫码查看
为解决现有基于计算机视觉的车辆称重系统在泛化能力和环境适应性方面的局限,提出了一种基于视觉大模型与机器学习的非接触式动态称重方法.首先,通过视觉大模型设计了一个创新的边缘检测算法,用于精确获取轮胎变形参数;其次,基于Mask-RCNN(Mask-Region-based Con-volutional Neural Networks)开发了一个包含完整轮胎字符数据库的通用识别模型,能够准确标记并提取轮胎侧壁的特征信息;进一步,采用LightGBM(Light Gradient Boosting Machine)构建了一个用于预测车辆轮胎与路面接触力的机器学习模型,并验证了其准确性、可行性和有效性.特别地,通过对SUV车辆和载重货车的测试,证明了该方法与传统动态称重系统相比,最大误差不超过5%,显示出高精度和优越性能.该研究提供了一种不需安装传感器的车辆称重技术,操作简便、成本低廉,未来在收费站、高速公路等交通工程领域有着广泛应用前景.
A Non-contact Vehicle Weight-in-motion Method Based on Large Vision Model and Machine Learning Methods
To address the limitations in generalization capability and environmental adaptability of existing vehicle weighing systems based on computer vision,this paper proposes a non-contact weight-in-motion method based on large vision model and machine learning.Initially,an innovative edge detection algorithm using vision large model was designed for the precise acquisition of tire deformation parameters.Subsequently,a universal recognition model comprising a complete tire character database was developed based on Mask-RCNN(Mask-Region-based Convolutional Neural Networks),capable of accurately labeling and extracting features from the tire sidewalls.Furthermore,a machine learning model for predicting the contact force between vehicle tires and the road surface was constructed using LightGBM(Light Gradient Boosting Machine),and its accuracy,feasibility,and effectiveness were verified.Notably,through testing on SUV vehicles and heavy-duty trucks,this method has been demonstrated to have a maximum error of less than 5%compared to traditional weight-in-motion systems,showcasing high precision and superior performance.This study introduces a vehicle weighing technology that does not require the installation of sensors,offering a user-friendly and cost-effective solution.The potential applications of this technology are extensive,particularly within the realms of toll stations and highways,and other traffic engineering sectors.

bridge engineeringweight-in-motionmachine learninglarge vision modelcharacter recognitionload monitoring

高康、陈子达、张皓炜、刘松荣、吴刚

展开 >

东南大学混凝土及预应力混凝土结构教育部重点实验室,江苏南京 211189

东南大学智慧建造与运维国家地方联合工程研究中心,江苏南京 211189

东南大学土木工程学院,江苏南京 211189

浙江交投高速公路运营管理有限公司,浙江杭州 310020

展开 >

桥梁工程 动态称重 机器学习 视觉大模型 字符识别 荷载监测

国家自然科学基金青年基金江苏省自然科学基金青年基金浙江省交通厅科技项目

52208151BK20210254ZJTX-20230828004

2024

中国公路学报
中国公路学会

中国公路学报

CSTPCD北大核心
影响因子:1.607
ISSN:1001-7372
年,卷(期):2024.37(8)
  • 2