首页|基于CNN和尺度自适应Transformer融合网络的路面裂缝分割方法

基于CNN和尺度自适应Transformer融合网络的路面裂缝分割方法

扫码查看
路面裂缝分割技术的发展对评估民用基础设施的安全性和耐久性具有重要意义.然而,在应对复杂多变的背景环境时,精确地分割形态各异的裂缝仍具有挑战.为了提升分割性能,提出一种基于CNN和尺度自适应Transformer融合网络的路面裂缝分割方法.在结合CNN和Trans-former的双编码器中,提出尺度自适应Transformer块,通过结合尺度自适应多头注意力机制和细节增强前馈网络,有效地捕获多尺度裂缝特征和增强细节信息;并且,采用全局局部特征融合模块聚合双编码器的中间层特征,增强裂缝特征的辨别力.在解码器中,引入大核双重注意力模块恢复裂缝边缘信息,以及抑制背景噪声区域的影响,最终实现高精度的裂缝分割预测.最后,联合交叉熵分割损失和骰子损失优化网络训练过程.为验证所提方法的有效性,在DeepCrack、Crack500、CFTR478数据集上进行大量的对比试验和消融试验.研究结果表明:所提方法明显优于对比方法,在CFTR478验证数据集上的mIoU分数相比DTrc-Net和FAT-Net方法分别提升1.58%和1.82%;且在光线阴暗、雨天湿滑以及不同材质路面等复杂场景下,所提方法仍能有效地识别并精确地分割裂缝区域,保持清晰的边缘.在实际校园场景中应用所提方法进行路面裂缝分割,能够获得高质量路面裂缝分割结果,实际应用效果较好.
CNN and Scale Adaptive Transformer Fusion Network for Pavement Crack Segmentation
The development of pavement crack segmentation technology is crucial for assessing the safety and durability of civil infrastructure.However,accurately segmenting cracks of irregular shapes in complex and dynamic background environments remains a challenging task.To improve the segmentation performance,we propose a CNN and scale adaptive fusion network-based pavement crack segmentation method.Specifically,for the dual-encoder based on CNN and Transformer,we utilized scale-adaptive Transformer blocks,which integrate scale-adaptive multi-head attention and a detail-enhanced feed-forward network to effectively capture multi-scale features and enhance detail information.Additionally,we employed a global-local feature fusion module to aggregate the intermediate features from the middle layers of the dual-encoder.For the decoder,we designed a large kernel dual-attention module to enhance the detailed boundaries and mitigate the influence of background noise,achieving highly accurate crack segmentation.Finally,we combined the cross-entropy segmentation and Dice losses to optimize the network training process.We conducted comprehensive comparison and ablation experiments on the DeepCrack,Crack500,and CFTR478 datasets to demonstrate the effectiveness of the proposed method.The experimental results show that our method is superior to other methods and outperforms DTrc-Net and FAT-Net on the CFTR478 validation set by 1.58%and 1.82%mIoU,respectively.Furthermore,in complex scenes with low-light,rainy,and slippery conditions and roads with different materials,our method can still effectively identify and accurately segment the crack regions,maintaining clear boundaries.Moreover,our method is applicable to pavement crack segmentation in real campus scenarios,obtaining high-quality segmentations of pavement cracks,and has good practical application prospects.

pavement engineeringpavement crack segmentationscale-adaptive Transformermulti-scale crack featuredetail-enhanced feed-forward networklarge kernel dual attention

桂彦、叶文倩、王建新、吕松涛、葛冬冬

展开 >

长沙理工大学 道路灾变防治及交通安全教育部工程研究中心,湖南 长沙 410114

长沙理工大学计算机与通信工程学院,湖南长沙 410076

长沙理工大学交通运输工程学院,湖南 长沙 410114

路面工程 路面裂缝分割 尺度自适应Transformer 多尺度裂缝特征 细节增强前馈网络 大核双重注意力

2024

中国公路学报
中国公路学会

中国公路学报

CSTPCD北大核心
影响因子:1.607
ISSN:1001-7372
年,卷(期):2024.37(12)