首页|基于数据集的电梯关键部件状态监测与故障预测技术研究

基于数据集的电梯关键部件状态监测与故障预测技术研究

Research on Condition Monitoring and Fault Prediction of Elevator Key Components Based on Data Set

扫码查看
为实时监控电梯运行情况,本文提出基于数据集的电梯关键部件状态监测和故障预测方法.首先,设计电梯多源数据集,结合参数趋势和故障预测逻辑确定可用参数.然后,引入循环神经网络和双向长短时记忆神经网络,结合注意力机制构建状态监测和故障预测模型,形成包含故障预测、健康状态评估功能的预测系统.经实验,所设计的电梯关键部件状态监测和故障预测系统能够发挥实际效应.
In order to monitor the operation of elevator in real time,this paper puts forward a method of condition monitoring and fault prediction for key components of elevator based on data set.First,the elevator multi-source data set is designed,and the available parameters are determined by combining parameter trend and fault prediction logic.Then recurrent neural networks and bidirectional long short term memory neural networks are introduced,combined with attention mechanisms,to construct the model of condition monitoring and fault prediction,and a prediction system including the function of fault prediction and health evaluation is formed.Through the experiment,the designed condition monitoring and fault prediction system for key components of elevator can play the actual effect.

Data setElevatorCondition monitoringFault predictionKey components

刘晨辰、秦文、杨嫄、于凤国

展开 >

中国特种设备检测研究院 北京 100029

数据集 电梯 状态监测 故障预测 关键部件

2024

中国特种设备安全
中国特种设备检测研究中心 中国锅炉水处理协会 中国特种设备检验协会

中国特种设备安全

影响因子:0.28
ISSN:1673-257X
年,卷(期):2024.40(7)