首页|基于光纤陀螺的温度补偿模型改进、压缩和FPGA实现

基于光纤陀螺的温度补偿模型改进、压缩和FPGA实现

Improvement,compression,and FPGA implementation of temperature compensation model based on fiber-optic gyroscopes

扫码查看
为提高光纤陀螺(FOG)在变温环境下输出误差的补偿精度,在长短期记忆神经网络模型(LSTM)基础上,利用分段非线性粒子群算法(PN-PSO)对 LSTM 模型超参数寻优,建立 PN-PSO-LSTM 光纤陀螺温度补偿模型.为有效降低计算和存储开销,便于部署在资源受限的硬件环境中,提出一套适用于光纤陀螺应用场景的模型压缩方案,包括:知识蒸馏、剪枝、激活函数线性化、定点数量化等.最后基于 Xilinx 公司某芯片完成部署.对比实验结果表明,相较于传统反向传播(BP)模型和传统PSO-LSTM模型,采用所提模型补偿后,陀螺零偏输出均方误差分别降低 74.4%和 53.5%,模型压缩后在大小减小 94.1%的同时,陀螺零偏输出均方误差仍然比传统全精度模型更低,在FPGA实现后对比PC端模型推理速度提升 98.47%.
To improve the output error compensation accuracy of fiber optic gyroscope(FOG)in variable temperature environments,the piecewise nonlinear particle swarm optimization(PN-PSO)is used to optimize the hyperparameters of the long and short-term memory neural network(LSTM),and the PN-PSO-LSTM model for compensating the output error of FOG is established.In order to effectively reduce the computation and storage overhead and facilitate deployment in resource-constrained hardware environments,a set of model compression schemes suitable for FOG application scenarios are proposed,including knowledge distillation,pruning,linearization of activation function,quantization of fixed points,etc.Finally,the deployment is completed based on a chip from Xilinx.Comparison experimental results show that compared with the traditional BP model and traditional PSO-LSTM model,the gyro zero-bias output mean square error is reduced by 74.4%and 53.5%respectively after using the proposed model compensation,and the gyro zero-bias output mean square error is still lower than the traditional full-precision model after model compression while the size is reduced by 94.1%,and the model reasoning speed is increased by 98.47%compared with that of PC model after the implementation in FPGA.

fiber-optic gyroscopeLSTMtemperature compensationmodel compression

杨雷静、王竣可、苏杭

展开 >

北京邮电大学 电子工程学院,北京 100876

湖北三江航天红峰控制有限公司,孝感 432100

光纤陀螺 长短期记忆神经网络模型 温度补偿 模型压缩

国家自然科学基金

61875016

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(1)
  • 5