首页|具有最小信息延迟的多无人机路径规划方法

具有最小信息延迟的多无人机路径规划方法

Multi-UAV path planning with minimum information delay

扫码查看
在一些实时性要求高的监测任务中,为提升多无人机协同工作的效能,提出了具有最小信息延迟的多无人机路径规划方法.首先定义最大信息延迟描述监测信息的时效性,综合考虑了无人机能量、禁飞区等多种约束,以无人机信息延迟和飞行总距离为优化目标,建立多无人机路径规划模型.然后,提出一种改进的多目标灰狼算法,引入交叉算子完成灰狼位置更新以增强其全局搜索能力,引入大规模邻域算法以提高其局部搜索能力.最后,利用概率路图算法对得到的飞行方案进行局部避障优化,从而得到最终的路径规划结果.仿真和实验结果表明,所提算法不仅可以得到很好的路径规划结果,而且对比 NSGA-II 算法,本文算法得到的飞行路径总距离分别缩短了 3.34%、5.09%,最大延迟时间降低了 11.02%、15.66%,验证了所提算法的可行性和有效性.
In some monitoring tasks that require high real-time performance,a method for multi-UAV path planning with minimum information delay is proposed to enhance the efficiency of collaborative work among multiple UAVs.Firstly,the maximum information delay is introduced to describe the timeliness of monitoring information.The constraints of UAV energy and no-fly zones are all taken in account and a multi-UAV path planning model with UAV information delay and total fight distance as optimization objectives is established.Subsequently,an improved multi-objective grey wolf optimizer is proposed,which incorporates a crossover operator to enhance global search ability and a large-scale neighborhood algorithm to improve local search ability.Finally,the probabilistic roadmap algorithm is used to perform local obstacle avoidance optimization on the obtained flight plan in order to obtain optimal planned path.The simulation and physical experimental results demonstrate that the proposed algorithm not only achieves favorable planned path but also,compared to the NSGA-II,reduces the total flight path distance by 3.34%and 5.09%respectively,and decreases the maximum delay time by 11.02%and 15.66%.This validates the feasibility and effectiveness of the proposed algorithm.

information delayimproved multi-objective grey wolf optimizerpath planningobstacle avoidanceprobabilistic road map algorithm

陈洋、钟树成、陈志环

展开 >

武汉科技大学 机器人与智能系统研究院,武汉 430081

武汉科技大学 冶金自动化与检测技术教育部工程研究中心,武汉 430081

信息延迟 改进多目标灰狼算法 路径规划 避障 概率路图算法

国家自然科学基金国家自然科学基金

6217326262073250

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(5)