首页|Attention-GRU神经网络辅助的SINS/DVL组合导航算法

Attention-GRU神经网络辅助的SINS/DVL组合导航算法

SINS/DVL integrated navigation algorithm assisted by Attention-GRU neural network

扫码查看
针对多普勒测速仪(DVL)短时失效导致定位精度下降的问题,提出了一种注意力机制门控循环单元(Attention-GRU)辅助的捷联惯导(SINS)/DVL 组合导航算法.当 DVL 测速有效时,使用SINS/DVL 组合导航信息对 Attention-GRU 神经网络进行训练.当 DVL 故障时,使用训练完毕的Attention-GRU 神经网络预测 DVL 速度辅助校正 SINS.仿真结果表明:当 DVL 故障时,Attention-GRU相对纯惯性导航系统和GRU在匀速运动状态的平均速度误差分别减小了 71.35%和 3.48%,平均位置误差分别减小了34.76%和1.74%;在运动状态变化时平均速度误差分别减小了58.45%和14.67%,平均位置误差分别减小了 9.82%和 2.27%.
An algorithm of strapdown inertial navigation system/Doppler velocity log(SINS/DVL)integrated navigation assisted by attention-gated recurrent unit(Attention-GRU)is proposed to address the problem of degraded positioning accuracy caused by temporary failures of DVL in special terrains.During effective DVL measurements,the Attention-GRU neural network is trained by using SINS/DVL integrated navigation information.In the event of DVL failure,the trained Attention-GRU neural network predicts the DVL velocity to assist in correcting the SINS results.Simulation results demonstrate that when DVL is faulty,the Attention-GRU method reduces the average velocity error by 71.35%and 3.48%,and the average position error by 34.76%and 1.74%,respectively,compared with pure inertial navigation and GRU in constant velocity motion.During motion state changes,the Attention-GRU method reduces the average velocity error by 58.45%and 14.67%,and the average position error by 9.82%and 2.27%,respectively,compared with pure inertial navigation and GRU.

integrated navigationadaptive Kalman filteringDVL failuregated recurrent unitattention mechanism

王立辉、刘恩东、吴璠、胡桥、郝程鹏、吴敏

展开 >

东南大学 仪器科学与工程学院 微惯性仪表与先进导航技术教育部重点实验室,南京 210096

西安交通大学 机械工程学院,西安 710049

中国科学院 声学研究所,北京 100190

组合导航 自适应卡尔曼滤波 DVL故障 门控循环单元 注意力机制

国家自然科学基金国家自然科学基金国家自然科学基金江苏省重点研发计划

617731135237133762371446BE2022389

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(6)
  • 17