首页|面向多维数据与随机噪声的无人机飞行数据异常检测方法

面向多维数据与随机噪声的无人机飞行数据异常检测方法

A UAV flight data anomaly detection method for multidimensional data and random noise

扫码查看
针对当前无人机飞行数据异常检测方法中参数选择依赖专家知识的积累,异常检测类型单一的问题,提出了一种基于参数选择和数据重构的异常检测方法.首先,利用Spearman挖掘参数间的相关性,以去除冗余参数,完成飞行参数选择,减少对专家知识的依赖.其次设计了AE-LSTM模型,以无监督方式对选定参数进行重构,实现多类型异常数据检测.最后考虑到随机噪声的影响,引入了滤波器对残差进行平滑.利用真实无人机飞行数据进行验证,结果显示所提方法对三种异常类型检测的真阳率分别为 98.04%、97.80%、98.00%,优于单类支持向量机、长短期记忆网络和自编码器,验证了所提方法对不同异常类型检测具有良好的鲁棒性和泛化能力.
Aiming at the problem that parameter selection depends on the accumulation of expert knowledge and the anomaly detection type is single in current UAV flight data anomaly detection methods,an anomaly detection method based on parameter selection and data reconstruction is proposed.Firstly,Spearman is utilized to mine the correlation between parameters to remove redundant parameters and thus improve the model anomaly detection performance.Secondly,an AE-LSTM model is designed,and the selected parameters are reconstructed in unsupervised manner to realize multi-type anomaly data detection.Finally,a filter is introduced to smooth the residuals,considering the effect of random noise.Using real UAV flight data for validation,the results show that the true positive rates of the three anomaly types detected by the proposed method are 98.04%,97.80%and 98.00%,respectively,which is superior to single-class support vector machine,long and short-term memory network and self-encoder,and verifies that the proposed method has good robustness and generalization ability for the detection of different types of anomalies.

UAV flight dataanomaly detectionparameter selectiondata reconstructionunsupervised learning

李少波、王岩、杨磊、张安思、李传江

展开 >

贵州大学 省部共建公共大数据国家重点实验室,贵阳 550025

贵州大学现代制造技术教育部重点实验室,贵阳 550025

贵州大学 机械工程学院,贵阳 550025

无人机飞行数据 异常检测 参数选择 数据重构 无监督学习

国家自然科学基金面上项目贵州省省级科技计划项目

52275480黔科合基础-ZK[2023]一般059

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(7)