首页|面向大场景的LiDAR-IMU-RTK融合SLAM方法

面向大场景的LiDAR-IMU-RTK融合SLAM方法

LiDAR-IMU-RTK fusion SLAM method for large-scale environment

扫码查看
针对激光雷达(LiDAR)在大场景下同步定位与建图(SLAM)存在易退化和稳健性不佳的问题,提出了一种融合LiDAR、惯性测量单元(IMU)和实时动态差分定位设备(RTK)这三种传感器观测值的SLAM算法.为获得准确的优化初值并减少误差,利用多普勒测速方式解算初始全局姿态,并完成多源信息的空间基准统一.为适应复杂场景的连续定位,设计了一种动态调整各自权重与优化模式的因子图优化框架,融合了激光雷达里程计帧间约束、IMU预积分因子和RTK全局约束.在RTK遮挡、点云退化等各种城市环境中,实现了高精度定位和建图效果.实验结果表明,与LIO-SAM融合相同传感器信息相比,所提算法在RTK遮挡环境下的定位精度(均方根误差)提升了 65.8%.此外,在长距离车载实验中,系统具有良好的鲁棒性,且定位精度达到分米级.
Aiming at the problems of degradation and poor robustness of simultaneous localization and mapping(SLAM)of LiDAR in large scenes,a SLAM algorithm integrating the observations of LiDAR,inertial measurement unit(IMU)and real-time kinematic(RTK)is proposed.In order to unify the spatial datum of multi-source information and make the system get accurate initial optimization value,doppler velocimetry is used to obtain the global attitude during initialization.In order to adapt to the complex scene continuous positioning,a factor graph optimization framework is designed to dynamically adjust the respective weights and optimization modes,which integrates inter-frame constraints of LiDAR odometry,IMU pre-integration factor and RTK global constraints.In various urban scenes such as RTK occlusion and point cloud degradation,high-precision positioning and mapping effects are achieved.Experimental results show that compared with the same sensor information fusing with LIO-SAM,the proposed algorithm improves the positioning accuracy(root mean square error)by 65.8%in the RTK occlusion scenes.In addition,the system has good robustness and the positioning accuracy reaches decimeter level in the long-distance vehicle experiments.

SLAMmulti-source fusionlarge-scale environmentfactor graph

刘宏、潘树国、黄飞璇、王向、高旺

展开 >

东南大学仪器科学与工程学院,南京 210096

同步定位与建图 多源融合 大场景 因子图

国家重点研发计划项目

2021YFB3900804

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(9)