首页|分段式AEKF高速弹丸组合导航算法

分段式AEKF高速弹丸组合导航算法

扫码查看
在高速弹丸组合导航系统中,由于弹丸受空中复杂环境以及自身高速自旋、振动等因素影响,使得量测噪声统计特性无法被准确获取,导致组合导航系统精度下降.针对这一问题,提出了一种基于卷积神经网络(CNN)的分段式自适应扩展卡尔曼滤波(AEKF)高速弹丸组合导航方法.在GNSS/SINS松组合框架下,根据高速弹丸每个飞行阶段的速度变化率与俯仰角特性,训练可实时辨识弹丸飞行阶段的CNN模型,并将特定的飞行阶段与AEKF算法中的噪声估计器参数关联,使得弹丸在高速飞行过程中可根据飞行阶段自适应调节AEKF滤波算法的量测噪声协方差矩阵,从而提高弹丸组合导航精度.所提方法与一般AEKF弹丸组合导航方法在相同数据下进行测试、比较.测试结果表明,所提方法的速度和位置均方根误差平均下降了 54%,43%,有较好的参考与应用价值.
A segmented AEKF high-speed projectile integrated navigation method
In the integrated navigation system of high speed projectile,the statistical characteristics of measurement noise cannot be accurately obtained because the projectile is affected by the complex environment in the air,its high-speed spin,vibration and other factors,which leads to the decline of the precision of the integrated navigation system.Therefore,we propose a segmented AEKF high-speed projectile integrated navigation method based on convolutional neural networks(CNN).Under the framework of GNSS/SINS loose combination,we trained the CNN model to identify the flight phase of the projectile in real time.The measurement noise covariance matrix of AEKF is adjusted adaptively by associating each flight stage with the noise estimator parameters of AEKF algorithm,and the precision of integrated navigation is improved.The proposed method is tested and compared with the general AEKF projectile integrated navigation method on the same data set.The test results show that the proposed method reduces the root mean square errors of speed and position by an average of 54% and 43%,which has good reference and application value.

projectile navigationflight phase identificationconvolutional neural networksadaptive extended Kalman filter

刘宁、栗浩睿、苏中、范军芳、沈凯、赵文江

展开 >

北京信息科技大学高动态导航技术北京市重点实验室,北京 100192

北京理工大学 自动化学院,北京 100081

弹丸组合导航 飞行阶段辨识 卷积神经网络 自适应扩展卡尔曼滤波

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(11)