首页|基于改进模型预测控制的机器人自适应路径跟踪控制方法

基于改进模型预测控制的机器人自适应路径跟踪控制方法

Adaptive model predictive control algorithm of robots based on fuzzy sliding mode

扫码查看
针对轮式机器人在地头转向路径跟踪误差累积的问题,提出一种基于自适应速度跟踪的改进模型预测控制算法.首先,设计基于模糊理论的自适应速度预测算法,研究不同横向偏差和预览道路曲率下的路径跟踪精度,得到纵向速度与横向偏差和道路曲率的模糊规则表.其次,对模型预测控制算法中的状态方程进行横纵向分离,设计滑模控制算法进行纵向速度跟踪控制.最后,在实际车辆平台上,针对U型和平滑型两种地头转向路径对所提算法进行实验验证.实验结果表明,相较于传统模型预测控制算法,所提算法路径跟踪精度提升 28.9%.
To address the issue of accumulated path tracking errors in wheeled robot headland turning,an adaptive speed-tracking improved model predictive control algorithm is proposed.Firstly,an adaptive speed prediction algorithm based on fuzzy logic is proposed to enhance tracking performance.Path tracking accuracy is evaluated across different lateral error and preview road curvatures,and a fuzzy rule table is formulated to describe the relationship between longitudinal speed,lateral error and road curvature.Secondly,based on the decoupling of the state equations in the model predictive control algorithm into lateral and longitudinal components,a sliding mode control algorithm is designed for speed tracking control.Finally,experiments are performed on a real vehicle platform using U-shaped and smooth-shaped headland turning paths.The results demonstrate a 28.9% improvement in path tracking accuracy and a 62.3% reduction in control cycle solving time compared to traditional model predictive control algorithms.

wheeled robotspeed predictionfuzzy control theorypath trackingmodel predictive control

应泽华、王立辉、顾炜琪、许宁徽

展开 >

东南大学 仪器科学与工程学院 微惯性仪表与先进导航技术教育部重点实验室,南京 210096

轮式机器人 速度预测 模糊控制理论 路径跟踪 模型预测控制算法

2024

中国惯性技术学报
中国惯性技术学会

中国惯性技术学报

CSTPCD北大核心
影响因子:0.792
ISSN:1005-6734
年,卷(期):2024.32(11)