首页|难点注意力感知红外小目标检测网络

难点注意力感知红外小目标检测网络

扫码查看
随着飞行器机动性能的提升,多帧红外小目标检测方法不足以满足检测要求.近年来,基于深度学习的单帧红外小目标检测方法取得了巨大成功.然而,红外小目标通常缺少形状特征,而且边界与背景模糊不清,给准确分割带来了一定的挑战.针对上述问题,本文提出难点注意力感知红外小目标检测网络.通过基于点的区域建议模块获取目标潜在区域,同时滤除多余背景.为实现高质量分割、细化掩码边界模块、判断粗掩码中无序、非局部难以分辨点,融合这些难点的多尺度特征,进行逐像素注意力建模.最后,由点检测头对难点注意力感知特征重新预测,生成精细分割掩码.在公开数据集NUDT-SIRST和IRDST上进行测试,平均精度均值mAP达到 87.4和 63.4,F值达到 0.8935和 0.7056.本文提出的难点注意力感知红外小目标检测网络可在多检测场景、多目标形态下实现准确分割,抑制误报信息,同时控制计算开销.
Indistinguishable points attention-aware network for infrared small object detection
As aircraft maneuverability increases,multi-frame infrared small target detection methods are be-coming insufficient to meet detection requirements.In recent years,significant progress has been achieved in single-frame infrared small-target detection method based on deep learning.However,infrared small targets often lack shape features and have blurred boundaries and backgrounds,obstructing accurate segmentation.According to the problems,an indistinguishable points attention-aware network for infrared small object de-tection was proposed.First,potential target areas were acquired through a point-based region proposal mod-ule while filtering out redundant backgrounds.Then,to achieve high-quality segmentation,the mask bound-ary refinement module was utilized to identify disordered,non-local indistinguishable points in the coarse mask.Multi-scale features of these difficult points were then fused to perform pixel-wise attention modeling.Finally,A fine segmentation mask was generated through re-predicting the indistinguishable points attention-aware features by point detection head.The mAP of the proposed method reached 87.4 and 63.4 on the pub-licly available datasets NUDT-SIRST and IRDST,and the F-measure reached 0.8935 and 0.7056,respect-ively.It can achieve accurate segmentation in multi-detection scenarios and multi-target morphology,sup-pressing false alarm information while controlling the computational overhead.

object detectiondeep learninginfrared imaginginfrared small object detectionattention mech-anism

王伯霄、宋延嵩、董小娜

展开 >

长春理工大学光电工程学院,吉林长春 130000

长春理工大学空间光电技术研究所,吉林长春 130000

目标检测 深度学习 红外成像 红外小目标检测 注意力机制

国家重点研发计划国家自然科学基金重点项目国家自然科学基金

2022YFB3902505U214123162305032

2024

中国光学
中国科学院长春光学 精密机械与物理研究所 中国光学学会

中国光学

CSTPCD北大核心
影响因子:2.02
ISSN:2095-1531
年,卷(期):2024.17(3)
  • 35