首页|基于曲率特征的文物点云分类降采样与配准方法

基于曲率特征的文物点云分类降采样与配准方法

扫码查看
三维重构是文物数字化的关键技术,其中三维点云配准精度是评估重构质量优劣的重要指标之一.实际采样中,文物点云细节信息繁多,传统降采样后易出现细节缺失从而影响配准精度.为了解决这一问题,本文提出了一种基于曲率特征的文物点云分类降采样与配准方法.首先,通过线性矩阵激光测量获取文物的三维点云数据.其次,计算所有点的曲率值,并设置曲率阈值进行点云分类,不同点集按照其特征属性进行不同权重的降采样,从而最大限度地保留点云的形态特征和细节信息.最后,通过求解刚性变换模型实现点云配准.点云配准前的降采样处理后点云数据降至原始点云的 1/3,与传统的整体降采样ICP方法相比,平均距离从 0.89 mm约降至 0.59 mm,标准偏差从 0.29 mm约降至0.18 mm.在降低点云数据的同时也保证了配准的精度,适用于不同类型的文物点云数据.
A point cloud classification downsampling and registration method for cultural relics based on curvature features
3D reconstruction is crucial for digitization of cultural relics,and the accuracy of 3D point cloud registration is a significant metric for evaluating the reconstruction quality.In practice,cultural relics point cloud data includes numerous details,and using conventional downsampling methods may result in the loss of such details,thereby affecting registration accuracy.We propose a point cloud classification down-sampling and registering method for cultural relics based on curvature features.First,3D point clouds data of cultural relics are obtained using linear matrix laser measurement.Next,the curvature values of all points are calculated,and a curvature threshold is set for point cloud classification.Different point sets are carried out downsampling with different weights according to their feature attributes to retain the shape features and de-tails of the point cloud as much as possible.Finally,point cloud registration is achieved through calculating the rigid transformation model.Compared to the traditional global downsampling ICP method,the point cloud data of the downsampling processing before point cloud registration reduces to 1/3 of the original size.The average distance decreases from approximately 0.89 mm to 0.59 mm,while the standard deviation de-creases from about 0.29 mm to 0.18 mm.This approach guarantees the accuracy of downsampling and regis-tration and is applicable to various cultural relics point cloud data.

curvature featurecurvature thresholdclassification downsamplingpoint cloud registrationdi-gitization of cultural relics

朱婧怡、杨鹏程、孟杰、张津京、崔嘉宝、代阳

展开 >

西安工程大学机电工程学院,陕西西安 710048

中国社会科学院考古研究所,北京 100101

曲率特征 曲率阈值 分类降采样 点云配准 文物数字化

陕西省自然科学基础研究计划面上项目陕西省教育厅专项科研项目

2022JM-21922JK0404

2024

中国光学
中国科学院长春光学 精密机械与物理研究所 中国光学学会

中国光学

CSTPCD北大核心
影响因子:2.02
ISSN:2095-1531
年,卷(期):2024.17(3)
  • 27