首页|面向秦山核电事故管理的长周期时间序列数据预测方法研究

面向秦山核电事故管理的长周期时间序列数据预测方法研究

扫码查看
本文介绍了一种基于深度神经网络的长周期时间序列预测方法,实现对事故下核电厂状态的快速预测,为核电厂安全分析、事故管理等提供一种前瞻性的分析方法和思路.以深度学习为代表的数据驱动型方法为出发点,利用其擅长从数据中发掘规律并作推断预测的能力,建立起长期时间跨度上多元输入变量和多元输出变量的联系,从而实现利用有限的历史监测信号,对事故相关的重要参数未来演化趋势进行快速预测.最后以方家山核电 1、2 号机组为对象开展方法验证与应用研究,证明本方法能够实现对事故电厂的高精度预测,并辅助核电运行人员高效地开展事故管理工作.
Study on Long-period Time Series Data Prediction Method for Qins-han Nuclear Power Accident Management
This article introduced a deep neural network method to predict the status of a nuclear power plant un-der accidental conditions,which is a proactive analytical method for the NPP safety analysis and accident man-agement.It was motivated by the data-driven method in deep learning,adept at discovering patterns from data and making inferential predictions.Through the method,we estimated the statistic and long-term connections between inputs and outputs,which was able to forecast the progression of nuclear accident with limited histori-cal signals.Finally,the method validations and applications on Fangjiashan Units 1 and 2 were discussed,and the results proved that the method was quite efficient for predicting the operating states of the NPP under acci-dental conditions,and assisting the operators on the accident management.

neural networksevere accidenttime series prediction

陈家庆

展开 >

中核核电运行管理有限公司,浙江 海盐 314300

神经网络 严重事故 时序预测

2024

中国核电
中国原子能出版社

中国核电

影响因子:0.296
ISSN:1674-1617
年,卷(期):2024.17(1)
  • 9