首页|全球陆地生态系统净生态系统生产力估算

全球陆地生态系统净生态系统生产力估算

扫码查看
陆地生态系统作为全球最重要的碳库之一,对缓解全球气候变暖起着重要作用.对陆地生态系统碳通量的估算是评价陆地生态系统碳汇变化的重要环节.该研究基于通量站点观测数据,利用卷积神经网络(CNN),综合气象数据、遥感数据和土壤数据,估算全球陆地生态系统的净生态系统生产力(NEP).结果表明:CNN 能够有效模拟全球 NEP 的空间分布和总量大小,全球陆地生态系统 NEP 总量为(22±2)pgC/a,空间上约有三分之二的区域属于碳汇区,整体以碳汇为主导.其中,中国的 NEP 总量约为 1.17 pgC/a,约占全球的 5.3%.2000-2018 年,全球陆地生态系统 NEP 平均值的变化趋势不明显,碳汇的变化整体处于动态平衡中.
Estimation of Net Ecosystem Productivity of Global Terrestrial Ecosystems
Terrestrial ecosystem is one of the most important carbon pools in the world and it plays an important role in mitigating global warming.The estimation of terrestrial ecosystem carbon flux is a key part to evaluate the change of terrestrial ecosystem carbon sink.This study used Convolutional Neural Network(CNN)to estimate the Net Ecosystem Productivity(NEP)of global terrestrial ecosystems based on flux observation data,combined with meteorological data,remote sensing data and soil data.The resutls showed that CNN can effectively simulate the spatial distribution and total amount of global NEP.It was estimated that the global terrestrial ecosystem NEP is around(22±2)pgC/a,with approximately two-thirds of the spatial area being carbon sink regions,predominantly driven by carbon sequestration.The total NEP of China is approximately 1.17 pgC/a,accounting for around 5.3%of the global NEP.The change trend of the global average NEP was not obvious from 2000 to 2018,indicating that the global carbon sink is in dynamic equilibrium.

carbon flux simulationnet ecosystem productivity estimationconvolutional neural network

孙聪、于佩鑫、温倩倩、康晶、王刚、李贝

展开 >

中国环境监测总站,国家环境保护环境监测质量控制重点实验室,北京 100012

中国环境科学研究院研究生院,北京 100012

碳通量模拟 净生态系统生产力估算 卷积神经网络

2024

中国环境监测
中国环境监测总站

中国环境监测

CSTPCD北大核心
影响因子:1.761
ISSN:1002-6002
年,卷(期):2024.40(6)