首页|用GRU循环神经网络优化CMAQ预测结果

用GRU循环神经网络优化CMAQ预测结果

扫码查看
提高空气质量预报的准确度对于区域大气污染精准防控具有重要意义.针对邢台市空气质量预报情况,使用WRF气象模型输出数据和 CMAQ 空气质量模型输出数据结合 GRU 循环神经网络,建立了 WRF-CMAQ-GRU 模型,对2022 年 7 月邢台市 PM2.5、PM10、SO2、NO2、O3、CO 等 6 种污染物的预测结果进行优化.实验发现:该模型对 PM2.5 及 O3的优化效果最明显,PM2.5 数据优化后的相关系数由 0.28 提高到 0.85,O3 数据优化后的相关系数由 0.29 提高到 0.70.初步验证了 GRU循环神经网络对 WRF-CMAQ模型预报结果的显著优化作用,使空气质量预报准确度得到较大提升.
Optimizing the Prediction Results of the CMAQ Model Using GRU Recurrent Neural Network
Improving the accuracy of air quality forecast is of great significance for precise prevention and control of regional air pollution.In this study,aiming at the air quality forecast in Xingtai area,the WRF-CMAQ-GRU model was established using the WRF meteorological model output and the CMAQ air quality model output combined with GRU recurrent neural network.Correction experiment were conducted to optimize the prediction of six pollutant in Xingtai City in July 2022,including PM2.5,PM10,SO2,NO2,O3,and CO.It was found that the optimization effect of the model on PM2.5 and O3 was the most obvious,and the overall correlation coefficient of PM2.5 increased from 0.28 to 0.85,the correlation coefficient of O3 increased from 0.29 to 0.70.It's preliminary verified that the GRU recurrent neural network can significantly optimize the prediction results of the WRF-CMAQ model,which greatly improves the accuracy of air quality prediction.

ambient airforecastCMAQ modelWRF-CMAQ-GRU modelrecurrent neural network

张彦虎、范敬勇

展开 >

河北省邢台生态环境监测中心,河北 邢台 054000

环境空气 预测预报 多尺度空气质量模型(CMAQ) WRF-CMAQ-GRU模型 循环神经网络

2024

中国环境监测
中国环境监测总站

中国环境监测

CSTPCD北大核心
影响因子:1.761
ISSN:1002-6002
年,卷(期):2024.40(6)