首页|脑卒中患者30天非计划再入院风险预测模型的系统评价

脑卒中患者30天非计划再入院风险预测模型的系统评价

扫码查看
目的:系统评价、分析脑卒中患者30天非计划再入院发生风险预测模型,为临床实践提供参考.方法:计算机检索中、英文数据库从建库至2024年2月17日收录的关于脑卒中患者30天非计划再入院风险预测模型的相关文章.筛选文献和提取数据,并使用预测模型研究的偏倚风险评估工具PROBAST分析纳入研究的偏倚风险和适用性.结果:共纳入10项脑卒中患者非计划再入院风险预测模型开发研究;模型的受试者工作特征曲线下面积为0.62~0.955;10项研究整体偏倚风险较高,适用性较好,性能不一,各有优缺点.结论:脑卒中患者30天非计划再入院风险预测模型的研究尚处于发展阶段,预测性能有待提高.同时,医护人员应重点关注高龄、住院时间长、留置管道及存在多种慢性合并症者,有针对性地采取合理的预防措施.
Risk prediction model for 30-day unplanned readmission of stroke patients:a systematic review
Objective:To systematically evaluate and analyze the risk prediction model for 30-day unplanned readmission of stroke patients to provide reference for clinical practice.Methods:A comprehensive search was conducted for articles related to risk prediction for stroke patients with 30-day unplanned readmission risk from the inception of the databases to February 17,2024.Screened literature and extracted data,and used PROBAST,a bias risk assessment tool for predictive model studies,to analyze the bias risk and suitability of the included studies.Results:A total of 10 studies on the development of risk prediction models for stroke patients with unplanned readmission were included.The area under the receiver operating curve of the model was 0.62-0.955.The 10 studies showed relative high risk of overall bias,good applicability,different performance,namely,each had its own advantages and disadvantages.Conchisioni:The research of 30-day unplanned readmission risk prediction model for stroke patients is still on the way,and the prediction performance needs to be improved.Meanwhile,healthcare professionals should focus more on patients with advanced age,long hospital stay,indwelling tubes and multiple chronic comorbidities,and take reasonable preventive measures in a targeted manner.

strokereadmissionrisk prediction modelsystematic reviewevidence-based nursing

杨嘉伟、柳琳、刘瑞、高永娥、李春玉、曹孟娇、沈玮

展开 >

山东中医药大学护理学院,250355济南市

山东中医药大学附属医院康复科

脑卒中 再入院 预测模型 系统评价 循证护理

2024

中国护理管理
卫生部医院管理研究所

中国护理管理

CSTPCD北大核心
影响因子:2.545
ISSN:1672-1756
年,卷(期):2024.24(11)