首页|老年腹股沟疝腹腔镜术后复发的因素分析及风险预测可视化模型构建

老年腹股沟疝腹腔镜术后复发的因素分析及风险预测可视化模型构建

扫码查看
目的 分析老年腹股沟疝腹腔镜术后复发的影响因素,并构建风险预测可视化模型。方法 回顾性收集2017 年 8 月~2022 年 8 月于我院行腹股沟疝腹腔镜术的 597 例患者的临床资料,经计算机产生随机数表以 2:1 将患者分为学习集(398 例)、测试集(199 例)。所有患者术后随访 12~72 个月,将学习集复发患者纳入复发组,无复发患者纳入无复发组。比较学习集、测试集一般资料;比较学习集复发组、无复发组一般资料;经Cox回归模型分析老年腹股沟疝腹腔镜术后复发的影响因素,构建回归方程及风险预测列线图模型;经受试者工作特征(ROC)曲线、Calibration曲线、决策曲线分析(DCA)评价模型的预测效能、校准能力、临床净获益。结果 学习集、测试集一般资料比较,差异无统计学意义(P>0。05);597 例患者术后复发率为 10。55%;Cox回归分析显示,男性(HR=2。818,95%CI:1。703~4。663)、体质量指数(BMI)(HR=2。259,95%CI:1。209~4。222)、长期便秘(HR=3。080,95%CI:1。642~5。779)、嵌顿疝(HR=2。614,95%CI:1。159~5。897)、内环口内径(HR=2。557,95%CI:1。398~4。677)、使用可吸收结扎线(HR=2。396,95%CI:1。293~4。443)、术后开始下床活动时间(HR=0。556,95%CI:0。368~0。839)是老年腹股沟疝腹腔镜术后复发的影响因素(P<0。05);构建Cox回归方程:h(t,x)=h0(t)exp(1。036x1+0。815x2+1。125x3+0。961x4+0。939x5+0。874x6-0。587x7);风险预测可视化模型预测学习集复发的曲线下面积(AUC)为 0。942(95%CI:0。914~0。962),灵敏度为 92。68%(95%CI:80。13%~98。53%),特异度为 94。96%(95%CI:92。13%~97。12%),预测测试集术后复发的AUC为 0。926(95%CI:0。880~0。958),灵敏度为 86。36%(95%CI:65。12%~97。15%),特异度为 90。40%(95%CI:85。13%~94。31%);Hosmer-Lemeshow检验显示,学习集、测试集的Calibration曲线差异均无统计学意义(χ2=0。854,P=0。165;χ2=0。905,P=0。097);Bootstrap法内部验证结果显示,学习集、测试集的C-index指数分别为 0。915(95%CI:0。847~0。983)、0。907(95%CI:0。869~0。945);DCA显示学习集、测试集分别在风险阈值0~0。98、0~0。96 内获取临床净收益。结论 老年腹股沟疝腹腔镜术后复发的影响因素包括男性、术前BMI、长期便秘、嵌顿疝、内环口内径、使用可吸收结扎线、术后开始下床活动时间,根据上述影响因素构建的风险预测可视化模型在预测老年腹股沟疝腹腔镜术后复发时具有良好的临床效能。
Analysis of factors and risk prediction visualization model construction for recurrence of inguinal hernia after laparoscopic surgery in the elderly
Objective To analyze the factors of recurrence after laparoscopic inguinal hernia repair in elderly patients and construct a risk prediction visualization model.Methods The clinical data of 597 patients who underwent laparoscopic inguinal hernia repair in our hospital from Aug 2017 to Aug 2022 were retrospectively collected and randomly divided into a learning set(398 cases)and a testing set(199 cases)by a computer-generated random number table at a ratio of 2:1.All patients were followed up for 12~72 months after surgery,and the learning set patients who recurred were included in the recurrent group,and those who did not recur were included in the non-recurrent group.The general data of the learning set and the testing set were compared;the general data of the recurrent group and the non-recurrent group of the learning set were compared.Cox regression model was used to analyze the influencing factors of recurrence after laparoscopic inguinal hernia repair in elderly patients,and construct a regression equation and risk prediction nomogram model.Receiver operating characteristic(ROC)curve,Calibration curve,and decision curve analysis(DCA)were used to evaluate the predictive performance,calibration ability,and clinical net benefit of the model.Results There was no statistically significant difference in general data between the learning and testing sets(P<0.05).Among the 597 patients,63(10.55%)had recurrence after surgery.Cox regression analysis showed that male(HR=2.818,95%CI:1.703~4.663),body mass index(BMI)(HR=2.259,95%CI:1.209~4.222),long-term constipation(HR=3.080,95%CI:1.642~5.779),incarcerated hernia(HR=2.614,95%CI:1.159~5.897),inner ring diameter(HR=2.557,95%CI:1.398~4.677),use of absorbable ligation line(HR=2.396,95%CI:1.293~4.443),and time to start getting out of bed after surgery(HR=0.556,95%CI:0.368~0.839)were influencing factors of recurrence after laparoscopic inguinal hernia repair in elderly patients(P<0.05).Cox regression equation was constructed:h(t,x)=h0(t)exp(1.036x1+0.815x2+1.125x3+0.961x4+0.939x5+0.874x6-0.587x7).The area under the curve(AUC)of the risk prediction visualization model was 0.942(95%CI:0.914~0.962),the sensitivity was 92.68%(95%CI:80.13%~98.53%),and the specificity was 94.96%(95%CI:92.13%~97.12%).The AUC for predicting postoperative recurrence in the testing set was 0.926(95%CI:0.880~0.958),the sensitivity was 86.36%(95%CI:65.12%~97.15%),and the specificity was 90.40%(95%CI:85.13%~94.31%).There were no significant differences between the Calibration curves of the learning set and the testing set(χ2=0.854,P=0.165;χ2=0.905,P=0.097),The C-index values of the learning set and testing set were 0.915(95%CI:0.847~0.983)and 0.907(95%CI:0.869~0.945),respectively.The learning set and testing set obtained clinical net benefits within the risk threshold of 0~0.98 and 0~0.96,respectively.Conclusion Male gender,BMI,constipation history,incarcerated hernia,inner ring diameter,use of absorbable ligation line and postoperative recovery time are significant predictors of inguinal hernia recurrence in elderly patients.Based on the factors,the risk prediction visualization model is effecctive.

ElderlyInguinal herniaRecurrenceRisk factorsPrediction model

毕大磊、郅树升

展开 >

周口市中医院普通外科,河南周口 466000

老年 腹股沟疝 复发 危险因素 预测模型

2024

中国现代医药杂志
北京航天总医院

中国现代医药杂志

影响因子:0.689
ISSN:1672-9463
年,卷(期):2024.26(3)
  • 24