首页|基于OpenVX的计算图优化方法综述

基于OpenVX的计算图优化方法综述

扫码查看
卷积神经网络在图像识别领域取得了巨大的成功,深度学习和卷积神经网络成为了研究的热点.神经网络模型的推理部署需要高性能的异构架构芯片,OpenVX使用基于计算图的执行模型实现在异构平台高性能计算.计算图优化技术可以使得硬件平台更加高效地执行计算图.本文首先简单介绍了OpenVX编程框架,之后从节点融合,节点转换、节点删除,节点拆分和节点交换五个方面重点介绍了计算图优化技术.最后指出了计算图优化技术的发展趋势.
An Overview of graph optimization methods based on OpenVX
Convolutional neural networks have achieved great success in the field of image recognition,deep learning and convolutional neural networks have become research hotspots.Neural network models are deployed by high-performance heterogeneous architecture chips.To achieve high-performance computing on heterogeneous platforms,an OpenVX execution model graph-based is provided.Graph optimization technology make the hardware platform execute graph more efficiently.This paper introduces the OpenVX programming framework,then it focuses on the graph optimization technology from five aspects:node fusion,node transformation,node deletion,node splitting and node swap.Finally,the development trend of graph optimization technology is pointed out.

deep learningneural networkgraph optimization

刘振、林广栋、黄光红、毛晓琦

展开 >

安徽芯纪元科技有限公司

深度学习 神经网络 计算图优化

2024

中国集成电路
中国半导体行业协会

中国集成电路

影响因子:0.144
ISSN:1681-5289
年,卷(期):2024.33(1)
  • 3