首页|基于FPGA的高性能MobileNet硬件加速器研究与设计

基于FPGA的高性能MobileNet硬件加速器研究与设计

扫码查看
现有神经网络大多模型复杂,由于模型参数量、计算量较大而难以应用于移动终端等实际场景,因此本文选择轻量级神经网络MobileNet并利用高性能、可重构的FPGA平台进行硬件加速设计.通过并行展开、流水线设计、量化策略等方式优化加速器,针对提升并行度带来的大量DSP资源消耗,本文通过DSP优化编码方式对卷积操作中的乘法进行优化,从而减少了 44.8%的DSP资源消耗.实验结果表明本文在Xilinx ZCU102开发板上实现了 129.6 fps的推理速度,整体性能达到147.4 GOP/S.
Research and Design of High-performance MobileNet Hardware Accelerator Based on FPGA
Most of the existing neural networks have complex models.They are difficult to be applied to practical sce-narios such as mobile terminals due to the large amount of model parameters and calculations.Therefore,this paper chooses the lightweight neural network MobileNet to use the high-performance and reconfigurable FPGA platform for hardware acceleration design.The accelerator is optimized through parallel deployment,pipeline design,quantization strategy and other methods.In view of the large amount of DSP resource consumption caused by improving the paral-lelism,this paper optimizes the multiplication process of calculation through DSP optimized coding,thus reducing the DSP resource consumption by 44.8%.The experimental results show that the reasoning speed of 129.6 FPS is realized on Xilinx ZCU102,and the overall performance reaches 147.4 GOP/S.

MobileNetFPGAhardware accelerationneural networks

袁昊、陈标发

展开 >

福州大学电气工程与自动化学院

福州大学物理与信息工程学院

MobileNet FPGA 硬件加速 神经网络

2024

中国集成电路
中国半导体行业协会

中国集成电路

影响因子:0.144
ISSN:1681-5289
年,卷(期):2024.33(3)
  • 11