首页|面向水面无人艇的船舶舷号识别方法

面向水面无人艇的船舶舷号识别方法

扫码查看
[目的]针对水面船舶舷号检测问题,提出一种面向水面无人艇的实时船舶舷号检测方法.[方法]基于原始的单阶段目标检测模型(YOLO),引入注意力机制,利用空间信息交互模块和分割注意力融合方法,提升神经网络对重要目标区域的敏感度.考虑先验知识对模型精度的影响,结合自适应锚框算法和正样本增强策略提高回归精度.针对深度神经网络(DNN)收敛困难的问题,改进损失函数,在保证网络收敛速度的同时提高神经网络训练的稳定性.最后,将改进的目标检查模型部署在无人艇上进行有效性验证.[结果]结果表明,所提算法在 3 级海情下能够准确识别船舶目标及其标志舷号,相比于原模型,改进后的YOLO算法在全类平均精度(mAP)方面提高了 14%,识别速度满足实时要求.[结论]研究证明了所提舷号检测方法满足无人艇实时识别舷号任务的要求,并在复杂海洋环境中仍然具备识别能力.
Detection and identification of ship's hull number for unmanned surface vehicle
[Objective]Aiming at the problem of ship hull number recognition,this paper proposes a real-time ship's hull number recognition method for unmanned surface vehicles(USVs).[Methods]Based on a one-stage object detection model(e.g.YOLO),the attention mechanism is introduced to make the network more sensitive to the target area by the spatial information interaction module and divided attention method.Considering the effect of prior knowledge on accuracy,the adaptive anchor method and positive sample as-signment strategy are utilized to improve the accuracy of regression.Aiming to resolve the problem of slow convergence at the beginning,the loss function is redesigned to speed up the convergence and enhance the sta-bility of the network in the training phase.Finally,the proposed method is deployed in a USV to validate the availability of the recognition performance.[Results]The results shows that the proposed method can achieve the recognition of ships and hull numbers simultaneously under Sea State 3 conditions,and has a 14%improvement in mean average precision(mAP)compared with the original model,with the ability to perform recognition in real time.[Conclusion]The results of this study indicate that the proposed method can be ap-plied to USVs to perform hull number recognition,even under complex ocean conditions.

unmanned surface vehicleshull number recognitionvisible imageYOLO algorithmim-proved method

张韧然、张磊、苏玉民

展开 >

哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001

无人艇 舷号检测 可见光图像 YOLO算法 改进方法

黑龙江省优秀青年基金资助项目中央高校基本科研业务费专项资金资助项目

YQ2021E0133072022YY0101

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(1)
  • 22