首页|多特征融合的无人艇视觉目标长时相关鲁棒跟踪

多特征融合的无人艇视觉目标长时相关鲁棒跟踪

扫码查看
[目的]针对显著海浪遮挡、相机剧烈晃动引起的无人艇视觉目标跟踪脱靶问题,提出一种基于多特征融合的长时相关鲁棒跟踪算法.[方法]首先,采用多特征融合技术,增强目标特征表达,提高目标模型鲁棒性;其次,利用高维特征降维和响应图子网格插值,提高目标跟踪的效率与精度;然后,设计水面目标重识别机制,解决目标完全脱离视野时的稳定跟踪问题;最后,采用多个代表性视频数据集进行验证和比较分析.[结果]实验结果表明,相较于传统的长时相关跟踪算法,平均成功率提升 15.7%,平均距离精度指标提升 30.3%,F-Score指标提升 7.0%.[结论]所提算法能够处理恶劣海况下的目标脱靶问题,对于提升无人船艇及海洋机器人智能感知能力,具有重要技术支撑意义.
Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion
[Objective]To address the problem of visual target tracking failure caused by significant wave interference and severe camera shaking in unmanned surface vehicles(USVs),a multi-feature fusion long-term correlation robust tracking algorithm is proposed.[Methods]First,the multi-feature fusion technique is used to enhance the expression of target features and improve the robustness of the target model.Then,high-dimensional feature dimension reduction and response map sub-grid interpolation are utilized to improve the efficiency and accuracy of target tracking.After that,a mechanism for water surface target re-identification is designed to address the issue of stable tracking when the target is completely out of sight.Finally,the pro-posed algorithm is validated and compared through multiple representative video datasets.[Results]The experimental results show that compared with traditional long-term correlation tracking algorithms,the aver-age success rate is improved by 15.7%,the average distance precision index is improved by 30.3%and the F-score index is improved by 7.0%.[Conclusion]The proposed algorithm can handle target tracking failure in harsh marine environments and has important technical support significance for improving the intelligent per-ception capability of USVs and ocean robots.

visual target trackinglong-term robust trackingsurface target re-identificationmulti-feature fusionunmanned surface vehicles

王宁、吴伟、王元元、孙赫男

展开 >

大连海事大学 轮机工程学院,辽宁 大连 116026

大连海事大学 船舶电气工程学院,辽宁 大连 116026

大连海事局 甘井子海事处,辽宁 大连 116000

视觉目标跟踪 长时鲁棒跟踪 水面目标重识别 多特征融合 无人艇

国家高层次人才支持计划项目国家自然科学基金资助项目国家自然科学基金资助项目国防基础科研计划资助项目辽宁省兴辽英才计划领军人才资助项目中央引导地方科技发展专项资金资助项目大连市科技创新基金重大基础研究资助项目中央高校基本科研业务费专项资金资助项目

SQ2022QB00329U23A2068052271306JCKY2022410C013XLYC22020052023JH6/1001000102023JJ11CG0093132023501

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(1)
  • 31