首页|基于智能预测控制的鱼雷状小型无人艇轨迹跟踪研究

基于智能预测控制的鱼雷状小型无人艇轨迹跟踪研究

扫码查看
[目的]针对无人艇(USV)在狭窄湖泊、涵洞作业时存在精度保持难和航迹控制难的问题,以自主研制的一款鱼雷状小型USV为对象,提出一种轨迹跟踪智能预测控制方法.[方法]首先,构建自主研制的欠驱动USV非线性状态空间模型;然后,设计智能预测控制器,该控制器基于模型预测控制的设计思想并结合改进的粒子群算法,在线决策、优化每一时刻的性能指标并纠正预测状态;最后,开展仿真和湖试试验测试系统对参考轨迹的跟踪性能,并与线性模型预测控制器的跟踪性能进行比较.[结果]结果表明,所设计的智能预测控制器超调小、抗干扰性好.[结论]所提方法不仅能运用于鱼雷状小型USV跟踪系统,也能对其他USV跟踪系统起到很好的借鉴作用.
Trajectory tracking of small torpedo-type unmanned surface vessel based on intelligent predictive control
[Objective]Aiming at the difficulties of the accuracy maintenance and tracking control of un-manned surface vessels(USVs)operating in narrow lakes and culverts,an intelligent predictive control meth-od for trajectory tracking is proposed on the basis of a self-developed small torpedo-type USV.[Methods]First,a self-developed nonlinear state space model of the underactuated USV is constructed.An intelligent pre-dictive controller is designed on the basis of the model predictive control design concept and combined with an improved particle swarm optimization(PSO)algorithm to make online decisions,optimize the performance indicators at every moment and correct the predicted state.Finally,simulation and lake tests are carried out to test the tracking performance of the system on reference trajectories,and the tracking performance is com-pared with that of the linear model predictive controller.[Results]The results show that the designed intelli-gent predictive controller has fast response speed,small overshoot and good anti-interference capabilities.[Conclusion]The proposed method can not only be applied to the tracking systems of small torpedo-type USVs,but can also provide references for other USV tracking systems.

unmanned surface vesseltrajectory trackingintelligent predictive controlimproved particle swarm algorithm

翁昱、曾庆军、李维、李昂、戴晓强

展开 >

江苏科技大学 自动化学院,江苏 镇江 212100

江苏科技大学 计算机学院,江苏 镇江 212100

无人艇 轨迹跟踪 智能预测控制 改进的粒子群算法

国家自然科学基金资助项目江苏省产业前瞻与共性关键技术资助项目

11574120BE2018103

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(1)
  • 18