首页|基于混合深度学习的压气机喘振快速诊断及自抗扰控制方法

基于混合深度学习的压气机喘振快速诊断及自抗扰控制方法

扫码查看
[目的]为了提升压气机设备安全、稳定运行的水平,提出一种基于混合深度学习参数辨识的喘振状态快速诊断方法,以及一种用于实现压气机退喘的自抗扰控制策略.[方法]首先,采用长短期记忆神经网络(LSTM)处理压气机参数辨识输入输出数据的时序关系,并融入高斯过程回归(GPR)的区间概率估计能力,提出一种基于LSTM和GPR结合(LSTM-GPR)的混合深度学习参数辨识算法,进而实现对压气机喘振状态的快速诊断;然后,基于自抗扰控制方法对压气机的节流阀参数进行控制,通过控制量对压气机节流阀参数的补偿,实现对压气机喘振状态的准确控制.[结果]结果表明,混合深度学习参数辨识算法可以实现对压气机临界Greitzer参数的准确辨识,能快速、准确地判断出压气机是否处于喘振状态,并且基于自抗扰控制的控制策略,可以使压气机有效退出喘振状态,相比传统的PID控制和非线性反馈控制等控制方法,所提方法快速、有效,可保证压气机的工作范围.[结论]提出的参数辨识和自抗扰控制方法能够用于压气机的喘振诊断和主动控制,可提升压气机的安全性与稳定性.
Rapid diagnosis and active disturbance rejection control of compressor surge based on hybrid deep learning
[Objective]In order to improve the safe and stable operation level of compressor equipment,this paper puts forward a rapid diagnosis method of surge states based on hybrid deep learning parameter identific-ation,and proposes an active disturbance rejection control(ADRC)strategy to realize compressor anti-surge.[Method]First,a long-short-term memory neural network(LSTM)is used to process the time series rela-tionship of the input and output data for compressor parameter identification;the interval probability estima-tion ability of Gaussian process regression(GPR)is integrated;a combination of LSTM and GPR(LSTM-GPR)is proposed;and a hybrid deep learning parameter identification algorithm is used to realize the rapid diagnosis of the compressor surge state.Then,based on the ADRC method,the parameters of the compressor's throttle valve are controlled,and the accurate control of the surge state of the compressor is realized through the compensation of the throttle valve parameters by the control amount.[Results]The results show that the hybrid deep learning parameter identification algorithm can accurately identify the critical Greitzer parameters of the compressor and quickly and accurately judge whether it is in a surge state,and the ADRC-based control strategy can effectively allow the compressor to exit the surge state,which is faster and more effective than tra-ditional PID control and nonlinear feedback control without losing the working range of the compressor.[Conclusion]The proposed parameter identification and ADRC method can be applied to the surge dia-gnosis and active control of compressors to improve their safety and stability.

compressorsurge diagnosishybrid deep learning modelactive disturbance rejection control(ADRC)

孙守泰、汤冰、薛亚丽、孙立

展开 >

东南大学 能源与环境学院,江苏 南京 210018

东南大学 能源热转换与控制教育部重点实验室,江苏 南京 210018

中国航空工业集团公司金城南京机电液压工程研究中心,江苏 南京 211100

清华大学 能源与动力工程系,北京 100084

清华大学 电力系统国家重点实验室,北京 100084

展开 >

压气机 喘振诊断 混合深度学习模型 自抗扰控制

国家科技重大专项江苏省科技厅科技项目

2017-I-0002-0002BK20211563&BZ2022009

2024

中国舰船研究
中国舰船研究设计中心

中国舰船研究

CSTPCD北大核心
影响因子:0.496
ISSN:1673-3185
年,卷(期):2024.19(2)
  • 24